
BIOEN 326 2014 LECTURE 2: FREE BODY DIAGRAMS 

Equilibrium. An object is at equilibrium if it has no linear or angular acceleration, including the 
common case where the object is not moving. When an object is at equilibrium, all forces and 
moments are balanced. If all forces act in the same plane, this requires three equations, ∑𝐹𝑥 =
0,∑𝐹𝑦 = 0,∑𝑀𝑧 = 0. In three dimensions, there are three more: ∑𝐹𝑧 = 0,∑𝑀𝑥 = 0,∑𝑀𝑦 = 0. 

Unknown Support Reactions are the reaction forces applied by supports touching the object. 
These supports apply whatever forces or moments are necessary to prevent movement. The 
Gere textbook indicates support reactions with crossed arrows.  

• fixed support can support forces and 
moments in all direction. In 2D 
(everything lies in a plane), this has 
three unknowns:  𝐹𝑥, 𝐹𝑦 and 𝑀𝑧. In 3D, 
it has 6 unknowns. Gere indicates these 
with a solid contact as shown. 

  
 
 

• Pins or Hinges are relevant in 2D 
and have two unknowns: they can 
prevent movement (thus apply 
forces) in both directions (𝐹𝑥, 𝐹𝑦), 
but cannot prevent rotation so 
apply no moment. Gere indicates 
these with a triangle support, others 
as a pinned hinge. 
 

• Cables can support tension only in the direction of the cable, 
so have one unknown, the magnitude of tension, F. 
Assuming you know the angle of the cable, 𝜃, then you also 
know 𝐹𝑥 = 𝐹𝑐𝑜𝑠𝜃 and 𝐹𝑦 = 𝐹𝑠𝑖𝑛𝜃, but realize that F is still the 
only unknown.  

 
• Rollers can support compression 

perpendicular to the surface. Like 
the cable, this has one unknown, F, 
which decomposes into  𝐹𝑥 and 𝐹𝑦 
based on the angle of the surface. 
However in this case, the force is 
only compressive, while the cable is 
only tensile. Gere indicates these 
with a triangle support on rollers a 
shown below. 
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Method: To find the forces on an object at equilibrium: (DICESE) 

1. Draw a free body diagram of the object, indicating distances and angles of interest, whether 
known or unknown. 

2. Indicate external forces acting on the object, including the known forces and moments as 
well as the unknown support reactions. (more on both of these below). 

3. Clarify the knowns and unknowns. 
4. Write the Equilibrium equations.  

o At equilibrium, the forces in each direction must sum to zero. In 2D, ∑𝐹𝑥 = 0 , 
∑𝐹𝑦 = 0 . It doesn’t matter what point you pick to sum forces, as long as all forces 
are applied to the same rigid object. That is, each force applies the same force to any 
point in the object. 

o In addition, the moments at any point in the object must sum to zero.  ∑𝑀𝑧 = 0 . 
Recall that a force applied to one point causes a moment at any other point (see 
definition of moments above). In addition, a moment applied to one point causes 
the same moment at any point in the object (just like forces cause same forces). 
This is not usually taught in Phys 121. 

o You should have one equation for each degree of freedom (eg 2D translation and 1D 
rotation is 3 equations for a plane). However, you could pick two points to sum the 
moments. If you do this, you will get four equations that are not linearly 
independent, and you should pick the three that are simplest to solve. This could 
mean that you replace out one of the force equations with a moment equation, but it 
is usually simpler to use only one moment equation (for a planar problem).   

5. Solve for the unknowns. You should have one independent equation for every unknown, or 
the problem is not solvable. Remember that you can write equations for more than one point 
on the object. In some cases, these will result in dependent (the same) equations, others 
independent equations.  

6. Error check your answer. You should always ask, does your answer make sense? That is, 
does the sign and magnitude seem reasonable, when the problem is simple enough that you 
trust your intuition. You may also want to do simple tests like plugging the answer back 
into the equilibrium equations to make sure that they come to zero.  

The rigorous method for signs.  

For simple examples, it is easiest to set up the equations using intuition and the right hand rule 
to determine the signs of the forces and moments. However, for more complex problems, you 
want to use a rigorous method to ensure that your signs are correct, so you should use this for 
easy problems too, to practice where you can test against your intuition to make sure you are 
doing it correctly. For example, it is a good idea to always draw the support reactions facing in 
the positive direction, since the actual direction is unknown before solving. This means that the 
sign of your answer tells the direction, without needing to refer back to the diagram. If you 
define a positive value to be anything else, you need to clarify the orientation when you state 
the final answer, since the sign itself no longer provides that information.  You may want first 
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identify a coordinate axis that you think will make the problem easiest to solve, and represent 
the angle of all forces relative to that axis (𝜃𝐹). Then, for each force, use  

𝐹𝑥 = 𝐹𝑐𝑜𝑠𝜃𝐹 

𝐹𝑦 = 𝐹𝑠𝑖𝑛𝜃𝐹 

𝑀𝐹 = 𝑟𝐹𝑠𝑖𝑛(𝜃𝐹 − 𝜃𝑟) 

where 𝜃𝑟 is the angle and 𝑟 is the length of 𝑟, the direction vector from the point O to where 
force is applied (see diagram for moments above.).  Make sure you include your unknowns the 
same way. Then, for the equilibrium equations, add all of these up and set to zero for each 
direction. If your solution results in a negative value for any of your unknowns, this means that 
the force or moment is in the opposite direction from that you drew. You may prefer to draw 
unknowns in the direction you think is correct, or you may prefer to draw all in a positive 
direction. Either way, consider how it was drawn and the sign when you interpret the result. 

Hints for how to start: If you don’t know where to start on a question, write down the known 
variables and then unknown variables you need to find.  Then, look at the equations at your 
disposal to find a set of equations that could connect the two sets.  In the A section, you may 
need to use prior knowledge or previous weeks.  Make sure you are considering the meaning of 
all terms, not just the letter used. For example, in problem 1, note that X is what we called L in 
the notes when we looked at normal stress.  

Hint for dealing with units: put everything into SI units, 
using scientific notation. That is, convert 0.5 um to 0.5e-6 m, 
or 5e-5 m. If the substitution is not obvious to you, then do 
the following: remember that 1e-6 m = 1um, so you can 
multiply or divide by 1e−6 m

1um
 since that equals one. So here, 

we say 0.5 um = 0.5um ∗ 1e−6 m
1um

= 0.5e − 6m since the two 
um cancel. Also, remember to convert derived SI units as 
appropriate. As an engineer, you need to be able to solve 
problems with real units without making mistakes (which 
cost $ and lives), so some of our problems will have units and you will be penalized if you make 
errors in the units. 

Example 1.  Person standing on a beam. 

A person with mass 50 kg stands on a beam that is 3 m long and weighs 30 kg. She stands two 
meters from the left end of the beam, as illustrated in the figure. What are the support reactions on 
the two ends?  

1. Draw FBD – this is already done in the problem statement. 
2. Indicate all external forces and moments, including both known forces and support 

reactions.  
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o Calculate the force applied by the person, which we will call F2. 𝐹 = 𝑚𝑎, and 
𝑚 = 50 𝑘𝑔 and 𝑎 = 𝑔 = 10 𝑚/𝑠2 so 𝐹2 = 500 𝑘𝑔 ∗ 𝑚

𝑠2
= 500𝑁. F2 is applied 2 m 

from the left because we are told that.  
o Calculate the resultant force from the weight of the beam, which we will call F1 = 

300N, using the same conversion from kg to N as above. By symmetry; F1 must 
be in the center, 1.5 m from each end.   

o Define the support reactions. We define FA and FB as the support reactions at 
the two ends.   

3. Clarify the unknowns. We are solving for FA and FB in terms of F1, F2, and the 
distances indicated.  

4. Write the equilibrium equations.  
o There are no forces in the x-direction 
o ∑𝐹𝑦 = 0 = −𝐹1 − 𝐹2 + 𝐹𝐴 + 𝐹𝐵. Here, I use the 

standard x-y coordinate system to determine the 
signs of each. That is, F1 points in the negative y 
direction, so is negative. Note that you could 
also have written that the y-forces cancel each 
other, so 𝐹1 + 𝐹2 = 𝐹𝐴 + 𝐹𝐵. This is the same 
equation.  

o ∑𝑀𝑧 = 0. To calculate the moments, I need to determine what I’m using as the 
origin for this equation. I will define the point where the person is standing (see 
O in figure above).  There is no moment applied externally, and no moment for 
F2, since it point through O, but the moments created on O by F1, 𝐹𝐴, and 𝐹𝐵 
must sum to zero. For this simple problem, I will determine signs with the right-
hand rule; that is, all distances and forces are positive, and the direction of the 
arrows tells me if the moment is positive or negative. In the drawing to the right, 
I have sketched the three direction vectors and forces, with the direction vector 
pointing at the base of the force. The first is negative (thumb points into paper), 
and the other two are positive. Thus, 𝑀𝐵 =  −2𝑚 ∗ 𝐹𝐴 𝑀1 = 0.5𝑚 ∗ 𝐹1, 𝑀𝐵 =
 1𝑚 ∗ 𝐹𝐵. Combining these gives −2𝑚 ∗ 𝐹𝐴 + 0.5𝑚 ∗ 𝐹1 + 1𝑚 ∗ 𝐹𝐵 = 0 

5. Solve for the unknowns. 
o We have two equations (from Fy and Mz) and 

two unknown, 𝐹𝐴 and 𝐹𝐵, so this is a well 
defined problem. To solve, we need to get rid of 
one of the unknowns. 

o Rewrite the ∑𝐹𝑦 equation as: 𝐹𝐴 = 𝐹1 + 𝐹2 − 𝐹𝐵. 
o Substitute this into the ∑𝑀𝑧 equation 

−2𝑚 ∗ (𝐹1 + 𝐹2 − 𝐹𝐵) + 0.5𝑚 ∗ 𝐹1 + 1𝑚 ∗ 𝐹𝐵
= 0 

−2𝑚𝐹1− 2𝑚𝐹2 + 2𝑚𝐹𝐵 + 0.5𝑚𝐹1 + 1𝑚𝐹𝐵 = 0 
−1.5𝑚𝐹1− 2𝑚𝐹2 + 3𝑚𝐹𝐵 = 0 

𝐹𝐵 =
1
2
𝐹1 +

2
3
𝐹2 =

300
2

+ 2 ∗
500

3
= 150 + 333 = 483𝑁 
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o Put this into the first equation to solve for FR1: 

𝐹𝐴 = 𝐹1 + 𝐹2 −
1
2
𝐹1 −

2
3
𝐹2 

𝐹𝐴 =
1
2
𝐹1 +

1
3
𝐹2 = 150 + 167 = 317𝑁 

6. Check your answer.  The support reaction forces are positive. This makes sense, because 
the supports should be applying an upward force on the beam. Also, by symmetry, each 
support should be supporting half the beam, so the ½F1 term in each makes sense. 
Finally, it makes sense that the reaction closer to the person supports more weight, by 
the same ratio as the distances, so the 2/3F2 vs 1/3F2 terms also make sense. 

 

Example 2: Cilia in flow.  
Cilia are organelles in many endothelial and epithelial cells 
that consist of a plasma membrane stretched over a bundle of 
microtubules. They help cells sense mechanical force. Hair 
cells in the ear have specialized stereocilia that appear in 
bundles and are involved in hearing. Here we are interested in 
cells that express a single cilia, which are found in kidneys, 
blood, etc, where they help regulate cell functions that must 
respond to fluid shear stress. Mutations in signaling molecules 
localized near the base of these cilia cause polycystic kidney 
disease, and these patients often also display vascular abnormalities. Here we ask a simple 
mechanics question about cilia: What are the forces and moments at the base of a cilia?  

o Cilia has length L 
o We assume: the wall shear rate is S, meaning fluid velocity is V = Sy at a distance 

y from the surface. 
o D = the per length drag coefficient of the cilia. (so force 

per unit length is D*V) 
1. Draw a free body diagram.  
2. Indicate external forces and moments. The cilia is exposed to a 

known force due to fluid drag, with force density 𝐹𝑑(𝑦) =
𝐷𝑉(𝑦) = 𝐷𝑆𝑦. The base is exposed to two support reactions, 𝐹𝐴 
and 𝑀𝐴, which are in the x-direction and the moment 
respectively. There are no forces in the y-direction, so we can 
neglect that support reaction. We can replace the linearly 
distributed load with a resultant force, F, applied to the cilia at a 
height 𝑌𝑅 from the wall. This problem is harder to solve with symmetry, so we can use 
the integral definitions: 𝐹𝑅 = ∫ 𝐹𝑑(𝑥)𝑑𝑥, and 𝑋𝑅 = ∫ 𝑥𝐹𝑑(𝑥)𝑑𝑥

𝐹𝑅
, but with y instead of x. The 

integrals will be calculated over the length of the cilia, so from y = 0 to y = L. 

𝐹𝑅 = � 𝐷𝑆𝑦𝑑𝑦
𝐿

0
= �𝐷𝑆𝑦

2

2
�
0

𝐿

=
𝐷𝑆𝐿2

2
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𝑌𝑅 =
∫ 𝑦𝐷𝑆𝑦𝑑𝑦

𝐹
= �𝐷𝑆𝑦

3

3𝐹
�
0

𝐿

=
𝐷𝑆𝐿3

3
∗

2
𝐷𝑆𝐿2

=
2
3
𝐿 

We now redraw the FBD with this resultant force, as indicated in the figure to the right.  
3. Clarify the knowns and unknowns. We are solving for 𝑀𝑅 and FR in terms of D, S, and 

L. (FR, YR and y are intermediate variables that must be removed). 
4. Equilibrium equations. There are no forces in the y-direction, and the problem is 2D, not 

3D, so we have two equations. We will calculate the moments around the base of the 
cilia (y = 0).  

o ∑𝐹𝑥 = 𝐹 + 𝐹𝐴 = 0. Note that all are defined in the +x direction, since we are using 
the rigorous sign method. 

o ∑𝑀𝑧 = 𝑀𝐴 +𝑀 = 0, where M is the moment due to the drag force FR. This time 
we will use the rigorous method to calculate M. With 𝜃 = 0 on the x-axis, 𝑟 = 2

3
𝐿, 

𝐹 = 𝐷𝑆𝐿2

2
, 𝜃𝐹 = 0  and 𝜃𝑟 = +90, so 𝑀 = 𝑟𝐹𝑠𝑖𝑛(𝜃𝐹 − 𝜃𝑟) = 2

3
𝐿 1
2
𝐷𝑆𝐿2 sin(−90) =

−1
3
𝐷𝑆𝐿3. You should be able to confirm that you would get the same thing if you 

simply used the right-hand rule. 
5. Solve for the unknown. In this case, solving is trivial. 

𝐹𝐴 = −𝐹 = −
𝐷𝑆𝐿2

2
 

𝑀𝐴 = −𝑀 =
1
3
𝐷𝑆𝐿3 

6. Error check your answer. It makes sense that the support reaction force is negative, since 
the surface must push the cilia in the opposite direction as the drag force. It makes sense 
that the support moment is positive since the MA as drawn will indeed keep the cilia 
from rotating due to the drag force.  

 

Example 3. Arm Curls 

Assume you curl a weight, Fw, and your 
lower arm has length a, and your bicep 
muscle attaches to a position at distance d 
from the elbow, at an angle 𝜃 from the 
upper arm, as illustrated in the figure to the 
right. Also assume that you are holding the 
weight so it does not move. What is the force 
on the bicep muscle, Fm?  

1. To draw a free body diagram, we will 
write the forces on the lower arm. 
The upper arm is attached at a hinge 
to the lower arm at the elbow.  

2. The external forces are Fw and Fm. A 
hinge has two support reactions, Fy, 
and Fx, so we also define these.  
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3. Our unknown is 𝐹𝑚. Our knowns are 𝑎, 𝑑,𝐹𝑤,𝜃. We also introduced the unknowns 𝐹𝑥 
and 𝐹𝑦, but we don’t need these, so will want to remove them from the equations. 

4. To write the equilibrium equations, we need to pick a origin. We will choose the point at 
which the bicep muscle attaches, as shown in the diagram. Another good option would 
be the elbow as the origin. You may want to repeat the problem that way as an exercise. 
This problem is more complex, so we will use the rigorous method for signs.  

o 𝐹𝑚 is at angle 𝜃𝑚 = 90 + 𝜃. It will put no moments on the origin. 
o 𝐹𝑤 is at angle 𝜃𝑤 = 270. It acts at a vector 𝑟𝑤 = (𝑎 − 𝑑) at angle 𝜃𝑟𝑤 = 0. 
o 𝐹𝑥 is at angle 0, and 𝐹𝑦 is at angle 90. Both act at a vector 𝑟 = 𝑑 at angle 180. 

To write the equilibrium equations, recall that you sum 𝐹𝑐𝑜𝑠𝜃 for ∑𝐹𝑥, 𝐹𝑠𝑖𝑛𝜃 for ∑𝐹𝑦, 
and 𝑟𝐹𝑠𝑖𝑛(𝜃𝐹 − 𝜃𝑟) for  ∑𝑀𝑧.  

o ∑𝐹𝑥 = 0 = 𝐹𝑚 cos(90 + 𝜃) + 𝐹𝑤 cos(270) + 𝐹𝑥 cos(0) + 𝐹𝑦 cos(90)  
o ∑𝐹𝑦 = 0 = 𝐹𝑚 sin(90 + 𝜃) + 𝐹𝑤 sin(270) + 𝐹𝑥 sin(0) + 𝐹𝑦 sin(90) 
o ∑𝑀𝑧 = 0 = (𝑎 − 𝑑)𝐹𝑤 sin(270 − 0) + 𝑑𝐹𝑥 sin(0 − 180) + 𝑑𝐹𝑦 sin(90 − 180) 

Which can be simplified by calculating the trig functions: 
o ∑𝐹𝑥 = 0 = 𝐹𝑚 cos(90 + 𝜃) + 𝐹𝑥 
o ∑𝐹𝑦 = 0 = 𝐹𝑚 sin(90 + 𝜃)− 𝐹𝑤 + 𝐹𝑦 
o ∑𝑀𝑧 = 0 = −(𝑎 − 𝑑)𝐹𝑤 − 𝑑𝐹𝑦 

5. Finally, solve the equilibrium equations to find 𝐹𝑚in terms of  𝑎,𝑑,𝐹𝑤,𝜃. 

𝐹𝑦 = −
(𝑎 − 𝑑)𝐹𝑤

𝑑
 

𝐹𝑚 sin(90 + 𝜃) = 𝐹𝑤 − 𝐹𝑦 = 𝐹𝑤 +
𝑎 − 𝑑
𝑑

𝐹𝑤 =
𝑑 + 𝑎 − 𝑑

𝑑
𝐹𝑤 =

𝑎
𝑑
𝐹𝑤 

Thus,  

𝐹𝑚 =
𝑎
𝑑

𝐹𝑤
sin(90 + 𝜃) 

 
Interestingly, we never needed to use the equilibrium equation for forces in the 
x-direction.  

6. Interpret and Error check. Since 𝜃 is small, sin(90 + 𝜃) is about 1, so the whole value is 
positive, and indeed the muscle is under tension, matching our experience that the bicep 
must contract during arm curls. More specifically, this tells us that 𝐹𝑚~ 𝑎

𝑑
𝐹𝑤. Since d is 

close to the elbow, 𝑎 ≫ 𝑑, and 𝐹𝑚 ≫ 𝐹𝑤 . That is, the muscle is applying a much larger 
force than the weight that is being lifted, because the bicep attaches close to the elbow. 
Note also that 𝐹𝑦 < 0. This means that the upper arm bone is pressing downward onto 
the lower arm bone at the elbow. One might have assumed 𝐹𝑦 > 0, so that the upper arm 
would be pulling upward on the lower arm, since something needs to lift the weight. 
We realize that the muscle more than compensates for the weight.  
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