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BIOEN 326 2014 LECTURE6: AXIAL LOADS 

Optional reference: Gere chapter 2.1 to 2.3, 2.6 

Here we consider pure normal force on a bar or a cable, applied at the ends, with no shear force. 
If the force is distributed evenly over the end areas, then it is equally distributed across the 
cross-section of the bar or cable at any point along the length, and the normal stress is uniform 
throughout the beam. Even if the force is not uniformly distributed at the end, then the stress 
will spread so that it is uniformly distributed throughout most of the bar or cable:  

 

In a few weeks, we will learn that long thin bars can buckle under compression, like when you 
press the two ends of a ruler together, and it bends, as in the figure below.  

 

We are not ready to calculate buckling effects, so we will only consider tensile loads on bars or 
cables, or compressive loads on bars that are not too long and thin.  

With these assumptions, we consider pure axial loads that are uniform across the cross-
sectional area of the bar or cable.  

Calculating internal forces. To calculate the stress and thus strain, we need to calculate the total 
tension or compression at any point of interest in a bar or cable. We refer to this tension or 
compression as an internal force, and we have a new sign convention for it: 

• Deformation, or Internal sign conventions. The sign conventions for the internal forces 
is the same as for normal stress; tension is positive (positive direction on positive face or 
negative direction on negative face) and compression is negative (negative direction on 
positive face or positive direction on negative face). 

• Cartesian or External sign conventions: In contrast, the external forces acting on the bar 
are positive if facing in the positive axis direction, and negative if facing in the negative 
axis direction. We have been and will continue to use the external sign conventions to 
write the equilibrium equations. 

To determine the internal forces and thus the internal stresses on a bar or cable, we take the 
following steps, which are illustrated in the example that follows. 

1. Make an imaginary cross-sectional cut across the object at a position of interest. 
2. Replace the object on one side of the cut with a solid support that applies a support 

reaction to the remainder of the object. You will get the same answer regardless of which 
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section of the object you keep versus replace with a solid support, but one approach will 
usually be faster.  

3. Define the internal force, N, as the support reaction applied by this solid support to the 
remainder of the object. Use the deformation sign convention, so normal internal force is 
always pointing away from the object, pulling tension. (plus face, plus direction or 
minus face, minus direction). If we always do this, then once we solve for N, its sign will 
tell us whether the internal force is tensile or compressive, without having to return to 
the diagram for the correct interpretation. 

4. Use this FBD to write the equilibrium equations (in one direction for axial loads) to solve 
for N, using the external sign conventions as always for FBD and equilibrium equations.  

 

Simple example of calculating internal forces. What is the internal force on a short column that 
is attached to a solid support and has a downward force P applied uniformly across the top 
surface? This is illustrated in panel A of the figure above. We draw a cut at an arbitrary position 
x between the two ends. Since this was arbitrary, the answer we get will be true for any position 
x between the two ends. The value x will appear in our equations only if the internal force 
varies with the axial position x. We can keep either end after we cut.  

If we keep the upper section, we have panel B in the figure. The equilibrium equation is simple: 
−𝑃 − 𝑁 = 0. Note that both arrows point downward, so they are negative using the external 
sign convention as always for equilibrium equations. Thus, 𝑁 =  −𝑃. Since this is negative, the 
column is under compression, as we can see from the figure.  

If we keep the lower half, we have panel C, and we see that we first need to solve for the 
support reaction from the lower surface. This will obviously be slower, but we can do it anyway 
to confirm that we get the same answer. In panel D, I draw the FBD showing the support 
reaction R, pointing upward using the external sign convention. For the forces to balance, R = P. 
Now panel C has R upward as well, and the equilibrium equation for the lower section in panel 
C is: 𝑅 + 𝑁 = 0, or 𝑁 = −𝑅 =  −𝑃. Yes! This is the same.  
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Calculating stress and strain from internal forces. 

If the bar is prismatic, meaning the cross-sectional geometry is constant along the length, and if 
the internal force N is also constant, then the area A and internal force N are constants with 
respect to x (the position along the bar o cable).  In this case, the stress is: 

𝜎 =
𝑁
𝐴

 

If the materials properties are the same along the length, and we remain within the proportional 
limit for linear elasticity, then there is a constant young’s modulus E, and the strain is: 

𝜖 =
𝜎
𝐸

=
𝑁
𝐸𝐴

 

We refer to 𝐸𝐴 as the axial rigidity of the bar or cable.  

The cross-sectional area, young’s modulus, or internal force can change with x along the length 
of the bar.  For a segmented bar, we can divide the bar into n segments, each of which is 
uniform, so we refer to the properties of the ith segment as 𝐴𝑖 ,𝐸𝑖,𝑁𝑖. In this case,  

𝜎𝑖 =
𝑁𝑖
𝐴𝑖

, 𝜖𝑖 =
𝑁𝑖
𝐸𝑖𝐴𝑖

 

If instead the bar changes continuously along the length (or within one of the segments), we 
refer to the properties at position x as 𝐴(𝑥),𝐸(𝑥),𝑁(𝑥). In this case, 

𝜎(𝑥) =
𝑁(𝑥)
𝐴(𝑥) , 𝜖(𝑥) =

𝑁(𝑥)
𝐸(𝑥)𝐴(𝑥)  

Checking for failure.  

To determine if a beam will fail, we need to identify the position of maximum stress, and 
compare the state of stress in this position to the ultimate stresses. For many applications, 
engineering standards define the maximum allowable stress, which is a much more 
conservative value, such as one third of the ultimate stress, in order to provide a degree of 
safety that addresses unpredictability in operating conditions or material properties. Thus, we 
will often compare stresses in an object to the ultimate or maximum allowable stresses.  

An object will fail if the state of stress at any position of the object surpasses any of the three 
ultimate stresses (UTS, UCS, and USS). A similar requirement exists for maximum allowable 
stress. We thus need to identify the positions in the object with the highest state of stress, and 
then apply stress analysis to identify the principle stresses and the maximum shear stress at 
these positions.  

Note that 𝜎(𝑥) = 𝑁(𝑥)
𝐴(𝑥) and 𝜎𝑖 = 𝑁𝑖

𝐴𝑖
, so the highest axial stress occurs where the force is highest 

and/or the cross-sectional area is smallest. If it is obvious where this occurs, you do not need to 
check the stress at all positions, but instead can focus on that critical position. 
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Calculating deformations. 

To determine the elongation or shrinkage of a bar or cable, we need to integrate the axial strain 
over the entire length, L, of the bar. Thus,  

𝛿 = � 𝜖(𝑥)𝑑𝑥
𝐿

0
= �

𝑁(𝑥)
𝐸(𝑥)𝐴(𝑥)𝑑𝑥

𝐿

0
 

For any segment with uniform conditions, this means that the deformation, 𝛿𝑖 = 𝜖𝑖𝐿𝑖 = 𝑁𝑖𝐿𝑖
𝐸𝑖𝐴𝑖

. 

For a bar of 𝑛 segments that each deforms by 𝛿𝑖, the total deformation is 𝛿 = ∑ 𝛿𝑖𝑛
𝑖=1 .  

Example 1: 

  

A bar is attached at point c, the top, to a solid support, and is pulled by 𝑃𝑏 = 3𝑁 upward at 
point b, 10 mm from the top, and downward by 𝑃𝑎 = 1𝑁, at point 𝑎, 33 mm from the top.  

1) If UTS = 1 MPa, UCS = 1 MPa, and USS = 0.5 MPa, how large must the cross-sectional 
area A be to prevent failure? 

2) What is the total change of length 𝛿 in the bar if 𝐴 =  10−5 𝑚2  and 𝐸 =  2 𝐺𝑃𝑎? 

We first calculate the internal forces. This is a segmented bar, with segments 𝑎𝑏 and 𝑏𝑐. In panel 
B, we show the internal force 𝑁1 in segment 𝑎𝑏, by making a cut between points 𝑎 and 𝑏. We 
draw 𝑁1 so that it applies tension to the beam, to make it positive in the deformation 
convention. Equilibrium then requires that 𝑁1 − 𝑃𝑎 = 0, 𝑜𝑟 𝑁1 = 1𝑁, which is tension. Next in 
panel C we consider the internal force 𝑁2 in segment 𝑏𝑐, by making a cut between points 𝑏 and 
𝑐. We draw 𝑁2 so that it applies tension to the beam. Equilibrium then requires that 𝑁2 + 𝑃𝑏 −
𝑃𝑎 = 0, or 𝑁2 = 𝑃𝑎 − 𝑃𝑏 = −2𝑁, which is compression. 

1) Note that segment 𝑎𝑏 is under the most (the only) tension, so we compare 𝜎1 = 𝑁1
𝐴1

 to UTS. 

Similarly, we compare −𝜎2 = −𝑁2
𝐴2

 to UCS. Finally, we do stress analysis to address USS. This is 

uniaxial load, and we learned last week that the maximum shear stress for uniaxial load is half 
the absolute value of the axial stress, so 𝜏𝑀𝑎𝑥 = 𝜎1/2, 𝜏𝑀𝑎𝑥 = −𝜎2/2, and the maximum observed 
for this is: max(𝜏𝑀𝑎𝑥) = max(𝜎1,−𝜎2) /2.  
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The beam has the same cross-section, so 𝐴1 = 𝐴2 = 𝐴, is what we seek to find. We find the cross-
section that will cause each type of failure: 

• 𝑁1
𝐴

= 𝑈𝑇𝑆, so 1𝑁
𝐴

= 1𝑀𝑃𝑎, or 𝐴 = 1𝑁
1𝑀𝑃𝑎

= 10−6𝑚2. 

• −𝑁2
𝐴

= 𝑈𝐶𝑆, so 2𝑁
𝐴

= 1𝑀𝑃𝑎, or 𝐴 = 2 ∗ 10−6𝑚2 

• max(𝜏𝑀𝑎𝑥) = max(𝜎1,−𝜎2) = 𝑈𝑆𝑆, so max �1𝑁
2𝐴

, 2𝑁
2𝐴
� = 1𝑁

𝐴
= 0.5𝑀𝑃𝑎, or 𝐴 = 2 ∗ 10−6𝑚2.  

Failure occurs for all values of A smaller than any of these. This means that the bar will fail if 
the cross-section is as small as 2 ∗ 10−6𝑚2 (assuming it doesn’t buckle first; this is about 
1mmX1mm, and the part under compression is 10 mm long; it is not that thin, but we would 
need to check this later when we learn about buckling).  It will fail in the upper segment that is 
under compression, either due to compressive stress or shear stress. The lower section would 
not fail unless the cross-sectional area is half that big, but at this point, the upper section would 
have already failed.  

2) calculate the change of length of each segment and add them together. 𝛿1 = 𝑁1𝐿1
𝐸𝐴

= 1𝑁∗20𝑚𝑚
𝐸𝐴

 

and 𝛿2 = 𝑁2𝐿2
𝐸𝐴

= −2𝑁∗10𝑚𝑚
𝐸𝐴

, so 𝛿 = 20𝑁𝑚𝑚−20𝑁𝑚𝑚
𝐸𝐴

= 0. The bar does not change length. 

Example 2:  

Consider a column of cross-sectional area A, height H, and density 𝜌.  What is the stress on the 
column at an arbitrary height y from the ground?  

In this case, we are given the column density, so we do not neglect the mass 
of the column itself. The force due to this mass varies continuously with 
height, so we need to find N(y). E and A are constants with respect to y.  

We can draw a cut at height y, and replace the lower part of the column with 
a solid support that applies an internal normal force N(y). We draw this 
pointing downward to be tensile and thus positive by the deformation sign 
convention. We can replace the distributed load of gravity with a resultant force at the centroid 
of this column section. Since the distributed load is uniform, we can multiply density by volume 
to get mass, and this by gravitational acceleration to get force, which is the same as integrating 
over the volume. Thus, the resultant force is 𝐹𝑅 = 𝐴(𝐻 − 𝑦)𝜌𝑔, and it points downward. The 
location of the centroid doesn’t matter to this calculation, so we will skip that.  

Now, the equilibrium equation for this situation is –𝐹𝑅 − 𝑁(𝑦) = 0, or 𝑁(𝑦) = −𝐴(𝐻 − 𝑦)𝜌𝑔. 
The negative sign indicates compression, which makes sense for this problem.  

To calculate stress, we divide internal force by cross-sectional area: 𝜎(𝑦) = 𝑁(𝑦)
𝐴(𝑦) =  −(𝐻 − 𝑦)𝜌𝑔.  

Error check: does this make sense? This means that at y = H, the top of the column, there is no 
stress, while at y = 0, the bottom of the column with the whole column pressing down, is –𝐻𝜌𝑔. 
That makes sense. We can also check units: 𝑚 ∗ 𝑘𝑔

𝑚3 ∗
𝑚
𝑠2

= 𝑁
𝑚2 = 𝑃𝑎, which is correct for stress. 


