
P a g e  | 1 
 

BIOEN 326 2014 LECTURE 7: TORSION 

Optional: For additional examples and explanations, read Gere chapter 3.l to 3.3 

Here we consider bars that are subjected to twisting, which is a moment that tends to produce a 
rotation around the longitudinal axis. We also call a twisting moment a torque. For example, a 
twisting moment arises when we turn a screwdriver. To provide pure torsion, we need to avoid 
net lateral forces on the bar, which would tend to bend rather than twist the bar.  While our 
hand can do this through a complicated set of biomechanical motions, the simplest way to 
provide pure torsion is through a set of equal and opposite forces, as in the sketch below. 

 

In this case, we have two moments, 𝑀 = 𝑑
2
𝐹, which are both positive since our thumb points in 

the positive x-axis direction when applying the right hand rule. Therefore, the solid support 
must have a support reaction that balances the sum of these two moments. We have already 
sketched the moment support reaction to be in the negative direction, so do not need to repeat 
the negative sign, and 𝑀𝑅 = 𝐹𝑑. The net force due to the concentrated forces is zero, since the 
forces are equal and opposite. If we had applied only one of the two forces, then we would be 
applying both a twisting moment and a bending moment to the bar, and we will not address 
bending moments until the next chapter. We do not worry about sign conventions for pure 
torsion.  

Here we consider solid or hollow bars with circular cross-sections; that is, bars that are radially 
symmetric. We also require that the bar is prismatic, which means every cross section is 
identical. In this case, a twisting moment creates pure torsion.  

Strains in Torsion 

We now derive the torque/stress/strain relationships for pure torsion. We do this by starting 
with the deformations, or strains. 

Imagine that one end of the bar twists by an angle 𝜙(𝑥), at any 
position x. Because the bar is prismatic, each section along the 
bar behaves the same, so we find the strain of a section if length 
dx, which twists by angle 𝑑𝜙. We call 𝑑𝜙

𝑑𝑥
 the rate of twist. 

• due to the twist, point b moves to point b’. 
• the shear strain on the surface (at radius R) is 𝛾(R).  
• recall that tan(𝛾) = 𝛿/𝐻, where 𝛿 is the displacement 

and H the height of an element, and that for small angles, this approximates as 𝛾 = 𝛿/𝐻.  
• Here the displacement is the length bb’ and H is ab=dx, so  𝛾(𝑅) = 𝑏𝑏′/𝑑𝑥. 
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• However, we also see that 𝑏𝑏′ = 𝑅 sin(𝑑𝜙), or since we can make 𝑑𝜙 arbitrarily small by 
making dx small, that  𝑏𝑏′ = 𝑅𝑑𝜙.  

• We can set the two expressions for bb’ equal, to get: 𝑑𝑥𝛾(𝑅) = 𝑅𝑑𝜙, or  𝛾(𝑅) = 𝑅 𝑑𝜙
𝑑𝑥

 

The same logic would have applied for any r, so 𝛾(𝑟) = 𝑟 𝑑𝜙
𝑑𝑥

. That is, the shear strain is zero 
along the central axis, and increases linearly with radius, so is largest at the outside. It is also 
proportional to the rate of twist. 

By integrating dx and 𝑑𝜙 along the length of the bar, we also see that 𝜙(𝐿)
𝐿

= 𝑑𝜙
𝑑𝑥

, so 𝛾(𝑟) = 𝑟 𝜙(𝐿)
𝐿

.  

Stresses in Torsion 

Now we consider the stress on the bar. To apply this, we assume that the total stress and strain 
remain within the proportional limit, so linear materials properties apply and there is a shear 
modulus, G. 

To calculate the stresses, we take a cross-section, and consider an element dA.  

• assume a distance r from the center.  
• assume a shear stress 𝜏, on the cross section at this element. 
• 𝜏 must act tangent to the surface, to create the shear strain 

that moved b to b’ in the previous diagram.  
• After drawing the shear stress in that direction in this 

diagram, we can calculate the moment due to the shear 
stress: 𝑑𝑀 = 𝑟 × 𝐹⃗ = 𝑟𝜏𝑑𝐴. 

• Because we are within the proportional limit, 𝜏 = 𝐺𝛾 =
𝐺𝑟 𝜙(𝐿)

𝐿
.  

• Thus, 𝑑𝑀 = 𝐺𝑟2 𝜙(𝐿)
𝐿
𝑑𝐴 

We can integrate this over the cross-sectional area to get the total moment, which will equal the 
moment calculated by the applied forces. We call the overall moment the torque, T: 

• 𝑇 = ∫ 𝑑𝑀 =𝐴 ∫ 𝐺𝑟2 𝜙(𝐿)
𝐿
𝑑𝐴𝐴  

• Note that 𝐺 𝜙(𝐿)
𝐿

 is constant with respect to dA, so can be taken outside of integration 

• This leaves ∫ 𝑟2𝑑𝐴 = 𝐼𝑝𝐴 , which we define as the polar moment of inertia. 
• To calculate 𝐼𝑝, we realize that the integration over area is a double integral with respect 

to radius and angle, and that 𝑑𝐴 = 𝑑𝑟 × 𝑟𝑑𝜃.  Thus,  𝐼𝑝 = ∫ 𝑟2𝑑𝐴 = ∫ 𝑑𝑟𝑅
0𝐴 ∫ 𝑟𝑑𝜃2𝜋

0 𝑟2, or 

𝐼𝑝 = ∫ 𝑟2𝑑𝐴 = ∫ 2𝜋𝑟3𝑅
0𝐴 = 2𝜋𝑅4

4
.  Thus, 𝐼𝑝 = 𝜋

2
𝑅4, for a circle.  

• For a hollow cylinder, we subtract the missing polar moment of inertia of the hollow 
portion from the outer circle, so if the inner and outer radii are Ri and Ro respectively, 
then 𝐼𝑝 = 𝜋

2
�𝑅𝑜4 − 𝑅𝑖4�.  

• Thus, 𝑇 =  𝐺 𝜙(𝐿)
𝐿
𝐼𝑝, or 𝜙(𝐿) = 𝑇𝐿

𝐺𝐼𝑝
.  
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• We define the torsional stiffness, or torsional spring constant of the bar to be 𝑘𝑇 = 𝐺𝐼𝑝
𝐿

. 
This is a property of the bar that determines how much it rotates in response to a torque: 
𝑇 = 𝑘𝑇𝜙(𝐿), analogous to F = kx.  

• We define the torsional rigidity of the bar to be 𝐺𝐼𝑝. This is a property of the cross-
section of the bar.  

We can now exchange this value for 𝜙(𝐿) back into the equation for 𝜏: 𝜏(𝑟) = 𝐺𝑟 𝜙(𝐿)
𝐿

= 𝐺𝑟𝑇𝐿
𝐿𝐺𝐼𝑝

, to 

calculate the stress on any element from the torque. That is: 𝜏(𝑟) = 𝑟 𝑇
𝐼𝑝

. 

And, we can substitute this into the equation for strain: 𝛾(𝑟) = 𝜏
𝐺

= 𝑟 𝑇
𝐺𝐼𝑝

. 

 

Analogies to Axial loads: 

Note that we just studied responses to axial forces and now to torsion. Let’s compare the two. 

step Pure torsion Pure Axial Force 
calculate internal 
force or moment 

𝑇 = 𝑀 = �𝑟𝚤��⃗ × 𝐹𝚤��⃗  𝑁 = �𝑃𝑖 

calculate stress  𝜏(𝑟) = 𝑟
𝑇
𝐼𝑝

, max (𝜏) = 𝑅
𝑇
𝐼𝑝

 𝜎 =
𝑁
𝐴

 

calculate strain  𝛾(𝑟) = 𝑟
𝑇
𝐺𝐼𝑝

 𝜖 =
𝑁
𝐸𝐴

 

calculate 
deformation 

𝜙(𝐿) =
𝑇
𝑘𝑇

,𝑘𝑇 =
𝐺𝐼𝑝
𝐿

 𝛿 =
𝑁
𝑘𝑎

,𝑘𝑎 =
𝐸𝐴
𝐿

 

Note that torque has units Nm, and Ip has units m4, while force has units N and area units m2. 
The inclusion of the r in the stress and strain calculations for pure torsion makes up for the 
difference.  

Until now, we considered prismatic bars. If the bar is nonprismatic, we use the same techniques 
as for axial loads to consider each region separately for segmented bars, or integration for 
continually changing bars.  

Failure and Stress Analysis 

For pure torsion, the stress varies with the location of the element, with the highest stress at the 
surface. For any such situation, we need to consider two maximums when we perform a failure 
analysis.  

1. We need to consider the maximum level of stress (of each kind) over all the elements 
(positions), which I refer to as max(𝜏) and max (𝜎) and max(−𝜎).  

2. We need to consider the maximum shear and normal stresses over all orientations at 
each of those elements, which we call the principle stresses and 𝜏𝑀𝐴𝑋.  
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Now we apply this to pure torsion.  

1. At every element, we have 𝜎𝑥 = 𝜎𝜙 = 𝜎𝑟 = 𝜏𝑥𝑟 = 𝜏𝑟𝜙 = 0, and one nonzero 𝜏𝑥𝜙, which 
we called 𝜏(𝑟) = 𝑟 𝑇

𝐼𝑝
.  Thus, the maximum is: max�𝜏(𝑟)� = 𝑅 𝑇

𝐼𝑝
, which occurs at every 

point on the surface.  
2. At any element, we are already at the orientation providing maximum shear stress, so 

𝜏𝑀𝐴𝑋 = 𝜏(𝑟) and max(𝜏𝑀𝐴𝑋) = 𝑅 𝑇
𝐼𝑝

. The principle stresses at this location are calculated 

from 𝜎1,2 = 𝜎𝑥+𝜎𝑦
2

± ��𝜎𝑥−𝜎𝑦
2

�
2

+ 𝜏2 = 0 ± 𝜏 = ±𝜏 . 

To test for failure, we have to compare these values to UTS, USS, and UCS as in previous 
situations. We may also compare to allowable stresses, which are even lower, by some required 
safety factor, which addresses acceptable risk, lifetime of use, and other such policies. 

Combined Loading 

We have now learned how to analyze the effect of either an axial load or a pure torsion on a bar. 
However, in most real situations, a bar is subjected to multiple types of loads at the same time, 
which we call combined loadings. (This is covered in chapter 7.4 of Gere, but touched on 
earlier.) To understand the stress and strain of elements under combined loadings, we can 
apply superposition, meaning we simply add together the stresses or strains at each element 
that result from each of the types of loads, if the following assumptions are met: 

a. small deformations (so one load doesn’t change the geometry used to calculate a second) 
b. linearity (within proportional limit so stress and strain are linear functions of load) 
c. no interaction between the various loads; stresses and strains due to one load are not 

affected by another load 

Since we already are assuming small deformations and linearity for most problems where we 
calculate stress and strain, and since the condition (c) is usually met, we can usually apply 
superposition.   

The approach for combined loadings is 

1. select an element in the object of interest 
2. Calculate the internal forces and moments that result from each type of load (e.g the 

internal axial force, the twisting moment or torque, and (after next lecture) the bending 
moment and shear force). 

3. Calculate the normal and shear stresses due to each these forces and moments. 
4. Add these individual stresses to obtain the combined stresses. 
5. Determine the principal stresses and maximum shear stress using stress analysis. (if 

needed, e.g. to compare to ultimate stresses). 
6. Determine the strains using Hooke’s Law in 3D (if needed, eg for deformations). 
7. Depending on the question or purpose of the analysis, you may need to repeat for 

multiple elements of interest, to catch the true maxima or to integrate all deformations. 


