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BIOEN 326 2014 LECTURE 9: NORMAL STRESSES ON BEAMS 

Also read Gere chapter 5.1-5.5 

Here we calculate the stresses and strains due to bending moment, M(x) at a position x along 
the beam. 

First, we consider pure bending, where V(x) = 0, so M is the 
same along the beam. Like for pure torsion, we will start by 
calculating the deformations (strains) expected, then the 
stresses and finally integrate these to relate this back to the 
magnitude of the moment. 

We define the radius of curvature, 𝝆, to be the distance from 
the beam to where all cross-sectional planes meet, as in figure.  

We define the curvature, 𝜿 = 𝟏/𝝆. Thus a small curvature is a slow 
bend with a large radius of curvature, etc. 

Now we consider an infinitesimally small segment, ds, of this 
curve. This moves an angle 𝑑𝜃 along the curve. From the definition 
of circumference, 𝑑𝑠 = 𝜌𝑑𝜃. Thus, 𝜌 = 𝑑𝑆

𝑑𝜃
, so 𝜅 = 𝑑𝜃

𝑑𝑠
.  The sign 

convention for 𝜅 is the same as for M; smile is positive and frown is 
negative. 

Next we consider the longitudinal strains from this bending. If the beam bends upward (M>0), 
then the upper region is under compression and the lower region under tension. We define the 
neutral plane as the surface within the beam that is not under compression or tension. We will 
learn later how to find this place, but for now, we will call 
the neutral plane y = 0.  

Now consider a segment of length dx. The segment 
maintains this length on the neutral axis. However, at a 
height y, it has a length that depends on the longitudinal 
strain at that height:  𝑑𝑥�1 + 𝜖𝑥(𝑦)�. We want to relate this 
to the curvature, thus the angle 𝑑𝜃, so we note that as 
before,  

𝑑𝑥 = 𝑑𝑠 = 𝜌𝑑𝜃 
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but we can also calculate at the new height 

𝑑𝑥 ∗ �1 + 𝜖𝑥(𝑦)� = (𝜌 − 𝑦) ∗ 𝑑𝜃 

We then subtract these two to obtain: 

𝑑𝑥 ∗ �𝜖𝑥(𝑦)� = −𝑦 ∗ 𝑑𝜃 

And simplify to get: 

𝜖𝑥(𝑦) = −𝑦
𝑑𝜃
𝑑𝑥

= −𝑦𝜅 

Thus, strain is proportional to the curvature, and varies linearly with the height from the 
neutral axis. 

If we assume the material is linear and isotropic, we also 
know that 𝜎𝑥(𝑦) = −𝑦𝐸𝜅. 

Now we will integrate these stresses across the cross 
sectional area to get the total longitudinal force, which 
should be zero, since we applied only lateral forces or 
moments. ∫ 𝜎𝑥(𝑦)𝑑𝐴 = 0𝐴 . 

When we substitute in the equation we derived above for 
the stress, we realize that E is a constant and that 𝜅 is the 
same over the entire cross-sectional area, so we take these out of the integral: 𝐸𝜅 ∫ 𝑦𝑑𝐴 = 0𝐴 . 

Thus, we require that ∫ 𝑦𝑑𝐴 = 0𝐴 . Recall that we calculate the y-position of the centroid with: 

𝑦𝑐 = ∫𝑦𝑑𝐴
𝐴

, so this simply states that 𝑦𝑐 = 0, which means that the neutral plane is at the y-
position of the centroid. If the beam is symmetric in the y-direction, then the neutral plane is the 
half-way point.  

Next we calculate the contribution of the stress on each element to the bending moment around 
the neutral axis: 𝑑𝑀 =  −𝑦𝜎𝑥(𝑦)𝑑𝐴. The negative sign must be included because a positive stress 
applied at a positive y contributes a negative moment. (The stress in the picture above is 
compressive (negative) for positive y and is contributing a positive moment.) We can substitute 
in  𝜎𝑥(𝑦) = −𝑦𝐸𝜅 to get 𝑑𝑀 =  +𝐸𝜅𝑦2𝑑𝐴. 

The integral of the moment is then: 𝑀 = ∫ 𝑑𝑀 =𝐴 𝐸𝜅 ∫ 𝑦2𝑑𝐴𝐴  

We define 𝑰 = ∫ 𝒚𝟐𝒅𝑨𝑨  as the moment of inertia of the area A with respect to the neutral axis.  
This would be the relevant inertia if you were to spin the cross-sectional area around the neutral 
axis. This out-of-plane spinning is different from if you spin the area in-plane around the 
centroid. For that, the relevant inertia is the polar moment of inertia, Ip, which we encountered 
when we considered torsional moments. Each depends on the square of the distance from the 
central axis or plane. Both have units of distance to the fourth power. 
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We can thus rewrite our equation as 𝑀 = 𝐸𝜅𝐼, or ‘Mike’ 

𝑀 = 𝐼𝜅𝐸 

This is the moment-curvature equation.  

EI is called the ‘flexural rigidity’ which determines how easy it is to bend a bar, just as axial 
and torsional rigidity determined the ease of compressing or twisting a bar.  

This argument held for an infinitesimally small segment, so did not actually require that the 
beam have uniform bending. Thus, we actually have 𝑀(𝑥) = 𝐸𝐼𝜅(𝑥) or 𝜅(𝑥) = 𝑀(𝑥)

𝐸𝐼
.  

You may note that the bending moment created no shear stresses within the beam. In the next 
lecture we will calculate the shear stresses, and will find that these result from the shear forces. 
Conversely, the shear forces create no longitudinal normal stresses. Thus, we will see that the 
moment is the only contributor to longitudinal stresses, so the equations derived here are 
complete.  

Example 1.  

Consider a simple rectangular cantilever of length L, height H 
and width W, subjected to an upward load P at the left end 
and held by a solid support at the right.  

a) What is the longitudinal compressive and tensile stress 
at any location (x,y)? 

b) Where do the maximum for these occur, and what are they? 

In the previous lecture we determined for this cantilever that 𝑀(𝑥)  =  𝑥𝑃.  

By symmetry, we know that the neutral axis is the center, so the beam goes from 𝑦 =  −𝐻/2 to 
𝑦 =  𝐻/2.  

The moment of inertia is 𝐼 = ∫ 𝑦2𝑑𝐴𝐴 = 𝑊∫ 𝑦2𝑑𝑦
𝐻
2
−𝐻2

= 𝑊𝑦3

3
|
−𝐻2

𝐻
2 = 𝑊𝐻3

3∗8
− �−𝑊𝐻3

3∗8
� = 𝑊𝐻3

12
 

I use that to calculate stress:  𝜎𝑥(𝑥,𝑦) = −𝑀(𝑥)
𝐼
𝑦 = − 12𝑃

𝑊𝐻3 𝑥𝑦. 

The maximum longitudinal compression is at the base (the solid support), where 𝑥 = 𝐿, and at 
the upper edge, where  𝑦 = 𝐻/2. The maximum longitudinal tensile stress is at the bottom of 
the base, where  𝑦 = −𝐻/2. These values are min(𝜎𝑥) = − 6𝑃𝐿

𝑊𝐻2 and max (𝜎𝑥) = 6𝑃𝐿
𝑊𝐻2.  

Note that if we wanted to calculate the maximum compressive or tensile stress, without 
restricting this to ‘longitudinal’ stress, we would need to apply stress analysis. Before we can 
that, however, we would need to calculate the shear stress at each location, 𝜏(𝑥,𝑦), due to the 
shear force, V(x), since right now we don’t know what stresses that applies.  
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Example 2.  Here we ask the same questions for a more complicated situation. The steps are the 
same, but we need to consider more positions on the beam to figure out the extremes.  

A beam with cross-section as shown in panel A is exposed to the forces as shown in the panel B. 
What is the maximum longitudinal tensile and compressive stress and where are these found? 

 

To solve this, we first need to find the maximum and minimum values of M(x).  

• For this, we need to solve for the support reactions 𝑅𝐴 and 𝑅𝐵. From  ∑𝐹𝑦 = 0, we have 
𝑅𝐴 = −𝑅𝐵.  We will write the equilibrium equation for moment around point A, the left 
hand side: −𝑃𝑏 + 2𝑃𝑏 + 4𝑅𝐵𝑏 = 0. Thus,  𝑅𝐵 = −𝑃

4
, and from that, 𝑅𝐴 = 𝑃

4
.  

• Next we solve for M(x) within each segment. I chose the FBD method, with three 
segments, as shown in the figure. We already had to solve for the support reactions, so I 
keep the segment with the fewer external 
forces after the cut. I also note that I don’t 
need to solve for V(x) if I calculate my 
moments around the cut point. 

o In the left-hand segment, 
𝑀(𝑥) − 𝑥𝑃

4
= 0; 𝑀(𝑥) = 𝑃𝑥

4
.  

o In the central segment, 𝑀(𝑥) +
(𝑥 − 𝑏)𝑃 − 𝑃𝑥

4
= 0; 𝑀(𝑥) = 𝑃𝑏 −

3𝑃𝑥
4

.  
o In the right-hand 

segment, –𝑀(𝑥) − (4𝑏−𝑥)𝑃
4

= 0; 

𝑀(𝑥) =  − (4𝑏−𝑥)𝑃
4

.  
• To find the min and max of M(x), it is useful to draw the bending moment diagram. 

Each segment is linear in x, so we can just calculate 𝑀(0),𝑀(𝑏),𝑀(2𝑏),𝑀(4𝑏), which are 
the points between segments. For the internal points, we have two ways to calculate 
M(x). Since there is no couple , the two values should be the same. (If there were a 
couple, the two values should differ by 𝑀0, the moment applied by the couple.) Thus,  

o 𝑀(0) =  0 
o 𝑀(𝑏)  =  𝑃𝑏/4 or 𝑃𝑏 − 3𝑃𝑏/4 =  𝑃𝑏/4. 
o 𝑀(2𝑏) = 𝑃𝑏 − 3𝑃2𝑏

4
= −𝑃𝑏/2 , or − (4𝑏−2𝑏)𝑃

4
= −𝑃𝑏/2 

o 𝑀(4𝑏) = − (4𝑏−4𝑏)𝑃
4

= 0  
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This is shown in the bending moment diagram 
here. For a sanity check, we note that the beam 
bends upward on the left part and downward 
on the right, which makes sense given the forces 
applied. 

• Next, we need to calculate the minimum and maximum value of sigma at these x-
positions, which means we need to find the neutral axis, which is the centroid of the 
cross-section. The easiest way to find the centroid of this cross-section is to consider two 
separate rectangles. The centroid of the lower rectangle is a height a/2 from the bottom 
of the beam, while the centroid of the upper rectangle is a height 2a from the bottom. 
The area of the upper is 2𝑎2, and the area of the lower is 3𝑎2.  In lecture 1, we learned 
that 𝑦𝑐𝑜𝑚 = 1/𝑀∑𝑚𝑖𝑦𝑖 where 𝑦𝑖 is the center of mass of the ith subunit. Thus, 𝑦𝑐𝑜𝑚 =
1
5𝑎2

�3𝑎2 ∗ 𝑎
2

+ 2𝑎2 ∗ 2𝑎� = 1
5𝑎2

�3𝑎
3

2
+ 4𝑎3� = 11𝑎

10
= 1.1𝑎. Thus ,the neutral axis is 1.1a from 

the bottom of the beam, so we refer to this as y = 0. The minimum and maximum values 
of y are 𝑦𝑀𝐼𝑁 = −1.1𝑎,𝑦𝑀𝐴𝑋 = 1.9𝑎.  

• We recall from our previous example that 𝜎𝑥(𝑥,𝑦) = −𝑀(𝑥)
𝐼
𝑦, and the places of interest 

are (𝑏, 1.9𝑎), (𝑏,−1.1𝑎), (2𝑏, 1.9𝑎),𝑎𝑛𝑑 (2𝑏,−1.1𝑎), which are the top and bottom of the 
beam at the positions of min and max curvature. These evaluate to   

o 𝜎𝑥 = −1.9
4
𝑃𝑏𝑎
𝐼

= −0.475 𝑃𝑏𝑎/𝐼 at (𝑏, 1.9𝑎) 

o 𝜎𝑥 = 1.1
4
𝑃𝑏𝑎
𝐼

=  0.275 𝑃𝑏𝑎/𝐼 at  (𝑏,−1.1𝑎) 

o 𝜎𝑥 = 1.9
2
𝑃𝑏𝑎
𝐼

= 0.95 𝑃𝑏𝑎/𝐼 at (2𝑏, 1.9𝑎) 

o 𝜎𝑥 = −1.1
2
𝑃𝑏𝑎
𝐼

= −0.55 𝑃𝑏𝑎/𝐼 at (2𝑏,−1.1𝑎) 
o The maximum tensile is thus 0.95 𝑃𝑏𝑎/𝐼 at (2𝑏, 1.9𝑎), while the maximum 

compressive is −0.55 𝑃𝑏𝑎/𝐼 at (2𝑏,−1.1𝑎). In this case, the difference in 
magnitude of the curvature turned out to be more important than the difference 
in magnitude of the minimum versus maximum values of y but that will not 
always be the case for an asymmetric cross-section. 

• We have not quite finished however, because we were not given I. Instead, we must 
calculate it from the given variables,  a, b, and P. Note that we could have skipped this 
step if we only needed to know the locations of the extreme longitudinal stresses. We 
need 𝐼 = ∫ 𝑦2𝑑𝐴𝐴 = ∫ 𝑦2𝑑𝐴𝐴1

+ ∫ 𝑦2𝑑𝐴𝐴2
, for the two rectangles, since integration is a 

linear operator. Thus, 𝐼 = 𝑎 ∫ 𝑦2𝑑𝑦1.9
−0.1 + 3𝑎 ∫ 𝑦2𝑑𝑦−0.1𝑎

−1.1𝑎 =  𝑎𝑦
3

3
|−0.1𝑎
1.9𝑎 + 3𝑎𝑦3

3
|−1.1𝑎
−0.1𝑎, or 

𝐼 = 𝑎4 �1.93

3
+ 0.13

3
− 0.13 + 1.13� = 2.730𝑎4. Thus our max and min are: 

o 0.95 𝑃𝑏𝑎
2.73𝑎4

= 0.348𝑃𝑏/𝑎3 

o −0.55 𝑃𝑏𝑎
2.73𝑎4

= −0.201 𝑃𝑏/𝑎3 
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To summarize: 

• We calculate the neutral axis by symmetry or we calculate the y-position of the centroid 
from the bottom of the beam,  𝑦𝑐 = ∫𝑦𝑑𝐴

𝐴
, and use this value as the new y = 0 position. 

• Using that new definition for y, we calculate the moment of inertia: 𝐼 = ∫ 𝑦2𝑑𝐴𝐴 . The 
calculus is left as an exercise for the reader: 

o for a rectangle with height H in the y-dimension and width W: 𝐼 = 𝑊𝐻3/12 
o for a circle of radius r or diameter d: 𝐼 = 𝜋𝑟4

4
= 𝜋𝑑4

64
 

o for a triangle with height H in the y-dimension and width W: 𝐼 = 𝑊𝐻3/36 
o For a hollow cylinder or rectangle, then the moment of inertia is the difference 

between the outer geometry and the inner (missing) geometry, because 
integration is a linear operator. This is the same logic you would use to calculate 
the area of the cross-sectional geometry for a hollow beam. 

• We usually know either M(x) or 𝜅(𝑥) for all positions on the bar. Then, we can calculate 
the other from ‘Mike’:  

𝑀(𝑥) = 𝐸𝐼𝜅(𝑥) 

𝜅(𝑥) =
𝑀(𝑥)
𝐸𝐼

 

• Now we can calculate stress and strain: 

𝜎𝑥(𝑥,𝑦) = −
𝑀(𝑥)
𝐼

𝑦 = −𝐸𝜅(𝑥)𝑦 

𝜖𝑥(𝑥,𝑦) = −
𝑀(𝑥)
𝐸𝐼

𝑦 = −𝜅(𝑥)𝑦 

 

 

 

 

 

 

 

 

 

 


