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BIOEN 326 2014 LECTURE 10: SHEAR STRESSES ON BEAMS 

Also read Gere chapter 5.7-5.8 

Here we calculate the shear stresses and strains due to internal shear force, V(x) along beam. We 
know from equilibrium equations that the shear stresses must integrate to the internal shear 
force at that point: 𝑉 = ∫ 𝜏(𝑦)𝑑𝐴𝐴 . However, we don’t know how the shear stress is distributed 
over the height. This is far from trivial, and we will only derive this for rectangular cross-
sections. We will also ignore the sign of the shear stress as for torsion, since it doesn’t really 
matter.  

Since there are not forces or differences in geometry in the z-
direction (the width), we will always consider a small element 
as infinitesimally small in x and y, but having the entire width 
W. Recall that 𝜏𝑥𝑦 = 𝜏𝑦𝑥 for this element.  

If this element is on the upper or lower surface of the beam, 
there is nothing to apply a force on the outer face (the y-face), so the 𝜏𝑥𝑦 �

𝐻
2
� = 𝜏𝑥𝑦 �−

𝐻
2
� = 0. 

This argument did not arise when we considered the shear stress due to a shear force in lecture 
3, because we assumed then that the object was sufficiently large and flat that we could ignore 
the edge effects along the thin edges. In contrast, a shear stress on the side of the beam can be 
nonzero, because it is the z-face and the shear stress we consider here is in the x-y plane.   

Now consider a big chunk of the beam from x to dx and from an arbitrary y to H/2, as shown in 
the illustration to the left below. The internal shear stress and bending moments are 𝑀(𝑥) and 
𝑉(𝑥) at the left edge and 𝑀(𝑥 + 𝑑𝑥) and 𝑉(𝑥 + 𝑑𝑥) at the right edge.  We apply the equilibrium 
equation for the forces in the x-direction on this element, which is shown in the sketch here. The 
forces will have contributions from both the longitudinal normal stress 𝜎𝑥(𝑥,𝑦), and the shear 
stress 𝜏𝑥𝑦(𝑥,𝑦), as shown in the illustration to the right below. 

 
Since we need to sum forces, not stresses, we have to integrate each stress over the surface area, 
which means over width W and for all y’ between y and H/2 for the side walls, or over Wdx for 

the bottom wall. We integrate 𝜎𝑥(𝑥,𝑦)  over the x-faces at 𝑥 to get −𝑊∫ 𝜎𝑥(𝑥,𝑦′)𝑑𝑦′
𝐻
2
𝑦  and 𝑥 + 𝑑𝑥 

to get 𝑊∫ 𝜎𝑥(𝑥 + 𝑑𝑥,𝑦′)𝑑𝑦′
𝐻
2
𝑦 . We multiply 𝜏(𝑥, 𝑦) at the lower y-face by its area to get 

−𝑊𝑑𝑥𝜏(𝑥,𝑦). 
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We thus have: 

−𝑊𝑑𝑥𝜏(𝑥,𝑦) −𝑊� 𝜎𝑥(𝑥,𝑦′)𝑑𝑦′
𝐻
2

𝑦
+ 𝑊� 𝜎𝑥(𝑥 + 𝑑𝑥,𝑦′)𝑑𝑦′

𝐻
2

𝑦
= 0 

As long as we know M(x), we already know how to calculate these longitudinal stresses; recall 
that 𝜎𝑥(𝑥,𝑦) = −𝑀(𝑥)

𝐼
𝑦. Thus: 

−𝑊𝑑𝑥𝜏(𝑥, 𝑦) −𝑊� −
𝑀(𝑥)
𝐼

𝑦′𝑑𝑦′
𝐻
2

𝑦
+ 𝑊� −

𝑀(𝑥 + 𝑑𝑥)
𝐼

𝑦′𝑑𝑦′
𝐻
2

𝑦
= 0 

Since M(x) doesn’t change over the height, this can be removed from the integral: 

−𝑊𝑑𝑥𝜏(𝑥,𝑦) + 𝑊
𝑀(𝑥)
𝐼

� 𝑦′𝑑𝑦′
𝐻
2

𝑦
−𝑊

𝑀(𝑥 + 𝑑𝑥)
𝐼

� 𝑦′𝑑𝑦′
𝐻
2

𝑦
= 0 

Now note that ∫ 𝑦′𝑑𝑦′
𝐻
2
𝑦  appears in two terms, and is equal to 𝑦

′2

2
 evaluated from y to H/2, or 

𝐻2

8
− 𝑦2

2
. We thus combine terms,  and substitute in this value: 

0 = −𝑊𝑑𝑥 𝜏(𝑥,𝑦) + 𝑊
𝑀(𝑥) −𝑀(𝑥 + 𝑑𝑥)

𝐼 �
𝐻2

8
−
𝑦2

2 �
 

Then we bring the term containing shear stress to one side of the equation and divide by Wdx: 

𝜏(𝑥,𝑦) =
1
𝐼
𝑀(𝑥) −𝑀(𝑥 + 𝑑𝑥)

𝑑𝑥 �
𝐻2

8
−
𝑦2

2 �
 

Finally, we realize that 𝑀(𝑥+𝑑𝑥)−𝑀(𝑥)
𝑑𝑥

 is the definition of the derivative 𝑑𝑀
𝑑𝑥

 as 𝑑𝑥 → 0. Thus: 

𝜏(𝑥,𝑦) = −
1
𝐼
𝑑𝑀
𝑑𝑥 �

𝐻2

8
−
𝑦2

2 �
 

We then remember that 𝑉(𝑥)  =  𝑑𝑀/𝑑𝑥, so 𝜏(𝑥,𝑦) = −𝑉(𝑥)
𝐼
�𝐻

2

8
− 𝑦2

2
�. Finally, we argue that the 

sign of the shear stress is not important to this analysis, since both signs lead equally to failure 
(unlike normal stress). Thus, we conclude that the shear stress is: 

𝜏𝑥𝑦(𝑥,𝑦) =
|𝑉(𝑥)|

2𝐼 �
𝐻2

4
− 𝑦2� 

At any given cross section (at any x), the maximum 𝜏𝑥𝑦  occurs at the height where 𝐻
2

4
− 𝑦2 is 

maximum, which occurs at y = 0. That is, at any given cross-section, the maximum value of the 
shear stress 𝜏𝑥𝑦, which we call max�𝜏𝑥𝑦�, occurs at the neutral plane.  
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Note the distinction between maximum shear stress, 𝜏𝑚𝑎𝑥, which is the maximum shear stress 
in an element calculated from the state of stress in that element using stress analysis, and the 
maximum value of shear stress, max(𝜏), which is the maximum value of shear stress in a 
specified orientation (here, 𝜏𝑥𝑦, which we are simply calling 𝜏), after comparing all locations in 
an object.  That is, according to the conventions we use in this class, 𝜏𝑀𝑎𝑥 is the maximum when 
considering all orientations of a specific element, and max(𝜏) is the maximum when considering 
all locations but only one orientation.  

We can further simplify this by replacing 𝐼 = 𝐻3𝑊
12

 and 𝐻𝑊 = 𝐴 for a rectangle, so 𝐻
2

8𝐼
= 12𝐻2

8𝐻3𝑊
=

3
2𝐻𝑊

= 3
2𝐴

.  Thus, for a given cross section with shear force V, 

max �𝜏𝑥𝑦(𝑦)� =
3𝑉
2𝐴

 

If we want the maximum value, max�𝜏𝑥𝑦(𝑥, 𝑦)� over the entire beam, we also need to find 
where |𝑉(𝑥)| is maximum. (We use the absolute value since we do not care about the sign of the 
shear stress, just the magnitude). You can easily find the extremes of 𝑉(𝑥) from the shear force 
diagram, so this identifies the x-position for the maximum load.  

In summary, for a beam with rectangular cross section, 

max�𝜏𝑥𝑦� =
3 max(|𝑉(𝑥)|)

2𝐴
 

Which occurs on the neutral axis where shear force is extreme.  

For a beam with a circular cross-section, we skip the derivation. In this case, 𝜏𝑥𝑦(𝑥,𝑦, 𝑧) depends 
on the z-position as well, since the beam is not uniform in the z-
dimension. However, there is still no shear stress on the upper and lower 
surface, and the maximum value for 𝜏𝑥𝑦 still occurs at the neutral axis, 
with  

max�𝜏𝑥𝑦� =
4 max(|𝑉(𝑥)|)

3𝐴
 

Finally, for a hollow cylinder with outer radius r2 and inner radius r1,  

max�𝜏𝑥𝑦� =
4 max(|𝑉(𝑥)|)

3𝐴 �
𝑟22 + 𝑟1𝑟2 + 𝑟12

𝑟22 + 𝑟12
� 

  



P a g e  | 4 
 

Testing for failure. 

We are now ready to determine whether the beam is expected to fail. To do this, we … 

1. Find the extremes of M(x) and V(x) to identify the locations of interest. 
2. comparing these locations, find the extremes of compressive, tensile and shear stress: 

max(𝜎𝑥), min(𝜎𝑥) and max�𝜏𝑥𝑦�. 
3. Apply stress analysis at each location of interest to identify the principal stresses 𝜎1 and 

𝜎2 and maximum shear stress 𝜏𝑚𝑎𝑥 at each of those locations.  
4. Compare the values of these at each location of interest to identify the largest tensile 

stress max (𝜎1), largest compressive stress −min(𝜎2), and largest shear stress max(𝜏𝑚𝑎𝑥) 
5. Compare these to the ultimate or allowable stresses of the same type. 

Additional comments: 

• You may note that shear stress is maximum at the neutral axis, where longitudinal stress 
is zero, while longitudinal stress is extreme at the upper and lower surfaces, where shear 
stress is zero. Thus, we only need to identify three spots: one with pure shear, one with 
uniaxial compression, and one with uniaxial tension, and doing stress analysis on each is 
easy, since each only has one nonzero stress. Recall that uniaxial stress is already aligned 
along the principle axes, and that 𝜏𝑚𝑎𝑥 = 𝜎𝑥/2, while pure shear is rotated 45 degrees 
from the principle axes and has 𝜎1,2 = 0 ± 𝑅 = ±𝜏𝑥𝑦. Thus, we have nonzero shear stress 
where longitudinal stress is extreme, and nonzero compressive and tensile stress where 
𝜏𝑥𝑦 is highest.  

• We will see in the example below that the magnitude of longitudinal stress from the 
bending moment is usually much larger than the magnitude of shear stress from the 
internal shear force, for long thin beams. For this reason, failure will usually occur at the 
locations that provide max(𝜎𝑥) or min(𝜎𝑥), even if failure occurs due to 𝜏𝑚𝑎𝑥 = 𝜎𝑥/2 at 
this location.  However, loads may be applied in a way that causes stresses due to V(x) 
to be greater, so you do need to check this by completing the complete or at least a 
convincing preliminary calculation.  

• In a situation of combined loads, then the steps are the same, but you will need to 
consider the combination of loads to calculate max(𝜎𝑥), min(𝜎𝑥) and max�𝜏𝑥𝑦�. Note that 
axial load will only affect 𝜎𝑥 and torsional load will only affect 𝜏𝑥𝜙. At the top and 
bottom of the beam, 𝜏𝑥𝜙 = 𝜏𝑥𝑧, while at the side of the beam, 𝜏𝑥𝜙 = 𝜏𝑥𝑦. In each situation, 
you will need to consider whether to look at additional positions, and you will need to 
include all the relevant stresses at each of these locations in your stress analysis.  
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Example 1: 

Consider a simple rectangular cantilever of height H=2W, width W, and length L=100W, 
subjected to an upward load P at the left end and held by a solid support at the right. Find the 
maximum compressive, tensile and shear stresses that you would use to test whether the beam 
is within allowable limits, and indicate where these occur on the beam. 

1. Find V and M. From examples in the previous lectures, we learned that V(x) = P, is the 
same for all x, and M(x) = xP, has an extreme at x = L; M = PL = 100 PW  

2. We use these locations to:  
a. find max (𝜎𝑥) = 6𝑃𝐿

𝑊𝐻2 (from previous lecture). We substitute in the values for L 

and H: max(𝜎𝑥) = 600𝑃𝑊
𝑊4𝑊2 = 150 𝑃/𝑊2. This occurs at the bottom of the beam at 

the solid support, 𝑥 = 𝐿,𝑦 = −𝑊.   
b. Find min(𝜎𝑥) = −600𝑃𝑊

𝑊4𝑊2 = −150 𝑃/𝑊2. This occurs at the top of the beam at the 

solid support, so at 𝑥 = 𝐿,𝑦 = 𝑊.  
c. Find max�𝜏𝑥𝑦� = 3𝑉

2𝐴
= 3𝑃

3𝑊2 = 0.75 𝑃/𝑊2. This occurs at the neutral axis of the 

beam, all along its length, so at all (𝑥, 0). 
3. Apply stress analysis at these positions.  

a. At (𝐿,−𝑊), 𝜎1 = 150𝑃/𝑊2, 𝜎2 = 0, and 𝜏𝑚𝑎𝑥 = max(𝜎𝑥) /2 = 75 𝑃/𝑊2. 
b. At (𝐿,𝑊), 𝜎1 = 0, 𝜎2 = −150𝑃/𝑊2 and 𝜏𝑚𝑎𝑥 = 75 𝑃/𝑊2. 
c. At  (𝑥, 0), 𝜎1,2 = ± max�𝜏𝑥𝑦� = ±0.75 𝑃/𝑊2, and 𝜏𝑚𝑎𝑥 = 𝜏𝑥𝑦 = 0.75𝑃/𝑊2 

4. Thus,  
a. max(𝜎1) = 150 𝑃/𝑊2 (bottom of beam at support) 
b. −min(𝜎2) = 150 𝑃/𝑊2 (top of beam at support) 
c. max(𝜏𝑚𝑎𝑥) = 75 𝑃/𝑊2 (top and bottom of beam at support) 

5. We would compare those to UTS, UCS, and USS respectively. 

Note that the bending moment causes 100-fold larger shear stress than does the internal shear 
force, for this example where the length is 100-fold larger than the half-height and width. This is 
because the equation for maximum longitudinal stress has the parameter L, which arose 
because the shear force load P was multiplied by the length to determine the moment. This is 
generally the case for slender beams.  However, if you do not know that one is much larger, one 
should rigorously check both max(𝜎𝑥) and max�𝜏𝑥𝑦� when testing for failure. 
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To summarize the three beam lectures: 

1. External shearing loads, P, induce shear forces V(x) and bending moments M(x) within 
the beams. External couples produce bending moments.  You can calculate V(x) and 
M(x) from these external loads and couples using free body diagrams or the integration 
method.  

2. The bending moment M(x) determines the longitudinal stress,  𝜎𝑥(𝑥, 𝑦) = −𝑀(𝑥)
𝐼
𝑦. You 

calculate 𝐼 = ∫ 𝑦2𝑑𝐴𝐴 , where y is the height from the neutral plane (the y-position of the 
centroid of the cross-section). 

3. The shear force V(x) determines the shear stresses 
a. The distribution and maximum values depend on geometry, not just I or A: 
b. For rectangular cross section, 𝜏(𝑥,𝑦) = 𝑉(𝑥)

2𝐼
�𝐻

2

4
− 𝑦2�, so shear stress varies 

parabolically with height. max(τ(x)) = 𝑉(𝑥)
2𝐼

�𝐻
2

4
� = 3𝑉(𝑥)

2𝐴
 occurs at y = 0, the 

neutral axis. 
c. For circular cross –section, max(𝜏(𝑥)) = 4𝑉(𝑥)

3𝐴
 occurs at y = 0 also.  

4. The beam usually fails at the x-position where the bending moment is maximum, and 
the y-position of the upper or lower surface. The failure here could be due to 
compressive stress (inside the bend), tensile stress (outside the bend) or shear stress 
(both locations). To be rigorous, you should also check the principle stresses and 
maximum shear stress at the neutral plane where the shear force has the highest 
magnitude, but these are usually lower for slender beams, except for certain loading 
conditions. 

 

Deflection due to shear forces and bending moments .  

Soon we will determine how beams deflect under these kinds of loads. This will require us to 
integrate the accumulated strains over the length of the beam. Slender beams can undergo large 
deflections while remaining within the proportional limit.  

 

 

 

 

 

 

 


