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BIOEN 326 2014 LECTURE 16: PRESSURE VESSELS 

Also read Gere chapter 7.1-7.7 

Arteries, balloons, compressed air cylinders, and similar objects are called pressure vessels 
because they hold fluid under pressure. A common question with pressure vessels is how much 
pressure the vessel can tolerate before failing.  

Certain genetic or acquired diseases can weaken blood vessel walls, so that the pressurized 
blood can cause a balloon-like bulge to appear in artery walls.  This is called an aneurism. In 
addition to the conditions that weaken the vessel, hypertension is a risk factor, since higher 
pressure can cause more damage. The aneurism is itself a pressure vessel, and at risk for 
rupturing, again particularly with high blood pressure.  Even if aneurisms don’t rupture, the 
irregular patterns of blood flow in and around the aneurism cause the endothelial cells lining 
the vessel to become inflamed, which increases the risk of thrombosis. The thrombus can break 
free and lodge downstream, causing heart attacks, strokes, or other problems. Thus, there is 
significant medical interest in understanding the properties of arteries as pressure vessels, and 
in understanding how they fail. 

Compressed air tanks are made of rigid material, and expand little under pressure, while 
arteries and balloons are made of soft extensible materials that can expand large amounts 
within their regular working conditions. We will start with small deformations, as explained in 
Gere, but then extend our analysis to consider softer materials in order to apply our knowledge 
to aneurisms. 

We thus start by asking how much stress and strain is in a pressure 
vessel under pressure P. We consider atmospheric pressure to be 
zero, since materials are considered to be under no stress and strain 
at atmospheric pressure. Thus, the pressure P is the increase over 
atmospheric. We also assume radius r and thickness t, with 𝑟 ≫ 𝑡, 
meaning the radius is perhaps at least 5 times as large as the material 
is thick. Therefore, we refer to these as thin-walled pressure vessels.  

To calculate stress and strain, we first note the following. By 
symmetry, the in-plane stress at any point in the vessel must be the 
same in all locations and in both in-plane axes. That is, the element is 
under uniform biaxial stress, 𝜎𝑥 = 𝜎𝑦, which we will simply call 𝜎.  So 
we already know that 𝜏𝑥𝑦 = 0 and we only have one stress to find. 
Now we draw a free body diagram for a spherical pressure vessel. 
Regardless of how we cut it, the cross-section looks the same.  

We now want to add up all forces applied by one half of the sphere to 
the other.  
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First we need to integrate the normal stress over the area of the wall 
cross-section, which is the perimeter times the thickness, or 𝐴𝑤𝑎𝑙𝑙 =
2𝜋𝑟𝑡, so 𝐹𝜎 = 𝜎2𝜋𝑟𝑡. This force is pulling, since the pressurized vessel 
is stretched so under tension.  

Second we need to integrate the pressure over the area of the fluid in 
cross-section, which is 𝜋𝑟2 , so 𝐹𝑝 = 𝑃𝜋𝑟2. This force is pushing. To be 
at equilibrium, these must balance, so 𝜎2𝜋𝑟𝑡 = 𝑃𝜋𝑟2.  We simplify 
and rearrange to get 

𝜎 =
𝑝𝑟
2𝑡

 

Thus the stress in the pressure vessel wall is proportional to pressure, but also to the radius of 
the vessel and inversely proportional to the thickness. This is called Laplace’s Law for Pressure 
Vessels.  

Now we turn to cylindrical pressure vessels. We still 
have r and t defined as before, with the same 
requirement for thin walls. However, we now have 
two stresses to consider.  

The longitudinal stress 𝝈𝑳 parallel to long axis and 
circumpherential stress 𝝈𝑪 perpendicular to long 
axis.  

If we cut a cross-section, we get the exact same 
conditions on the cross-section as before, so we don’t need to repeat the derivation to know: 

𝜎𝐿 =
𝑝𝑟
2𝑡

 

 If we cut the other way, for a section of 
arbitrary length L, we get two pieces of 
material with length L and thickness t, for an 
area of 2𝐿𝑡, over which 𝜎𝐶 acts.  

We also get a fluid surface of area 2𝑟𝐿, over 
with P acts. Thus, our equilibrium equation is 
𝜎𝑐2𝐿𝑡 = 𝑃2𝑟𝐿, which simplifies to  

𝜎𝑐 =
𝑝𝑟
𝑡

= 2𝜎𝐿 

Thus, cylindrical pressure vessels are under 
asymmetric biaxial stress, with the highest stress in the circumpherential direction, and two-
fold higher than that of a sphere of same r, t, and P. 
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Before we apply stress analysis to calculate the maximum shear stress, we need to consider the 
out-of-plane normal stress. This is the stress perpendicular to the plane of the vessel wall. We 
will call this 𝜎𝑟, since it points in the radial direction, that is, along a line from the center of the 
sphere or cylinder through the plane of the vessel wall, as illustrated in the central panel below. 
For both shapes, inside the vessel, 𝜎𝑟 =  −𝑝 since there is compression due to the fluid pressure. 
Outside the vessel, 𝜎𝑟 = 0 since we have normalized to atmospheric pressure. The material in 
the cylindrical pressure vessel is thus under triaxial stress with 𝜎𝐶 = 𝑝𝑟

𝑡
,𝜎𝐿 = 𝑝𝑟

2𝑡
, 0 < 𝜎𝑟 < 𝑝.  

However, since 𝑟 ≫ 𝑡, 𝑝𝑟
𝑡
≫ 𝑝, and we can neglect the nonzero stress −𝑝 inside the vessel when 

we consider the overall state of state of stress. We also note that there is no shear stress in this 
coordinate system (𝜏𝐶𝐿 = 𝜏𝐶𝑟 = 𝜏𝐿𝑟 = 0). Therefore: 

For a sphere 

𝜎𝑥 = 𝜎𝑦 =
𝑝𝑟
2𝑡

,𝜎𝑟~0, 𝜏𝐶𝐿 = 𝜏𝐶𝑟 = 𝜏𝐿𝑟 = 0 

and for a cylinder, 

𝜎𝑐 =
𝑝𝑟
𝑡

,𝜎𝐿 =
𝑝𝑟
2𝑡

,𝜎𝑟~0, 𝜏𝑥𝑦 = 𝜏𝑥𝑟 = 𝜏𝑦𝑟 = 0 

 

 

 

 

 

The maximum in plane shear stress is 𝑅 =  ��𝜎𝑥−𝜎𝑦
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 for a cylinder. However, we also need to consider the 

maximum out-of-plane shear stress, which is caused by the difference in maximum in-plane 
normal stress and 𝜎𝑟. That is, if we consider a planar element that is within the cut plane of the 
vessel as shown above, we can draw the imaginary element rotated by 45 degrees, and see that 
it is sheared, with the shear stress being 𝜏𝑚𝑎𝑥 as we defined it before, but for 𝜎 𝑎𝑛𝑑 𝜎𝑟 or 
𝜎𝑐  𝑎𝑛𝑑 𝜎𝑟. The fact that the stress perpendicular to this planar element (𝑒𝑔 𝜎𝐿) is nonzero does 
not affect this calculation; we can still use the stress analysis equations for rotation within any 
given plane. 

Thus, for a sphere,  𝜏𝑚𝑎𝑥 =  𝑅 =  ��𝜎𝑥−𝜎𝑧
2

�
2
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+ 02 = 𝑝𝑟
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, and for a cylinder, 

𝜏𝑚𝑎𝑥 =  ��𝑝𝑟/𝑡
2
�
2

+ 02 = 𝑝𝑟
2𝑡

.  
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In summary, for pressure vessels, assuming thin walls (𝒓 ≫ 𝒕), and that r and t are known: 

For a spherical pressure vessel, the walls are under approximately biaxial symmetric plane 
stress, with 𝜎 = 𝑝𝑟

2𝑡
, which is also the maximum normal stress. There is no compressive stress. 

The maximum shear stress is out-of-plane, so at a diagonal angle from inside to outside the 
vessel, at 𝜏𝑀𝑎𝑥 = 𝑝𝑟

4𝑡
. 

For a cylindrical pressure vessel, the walls are under approximately biaxial asymmetric plane 
stress, with the maximum stress around the circumpherence, 𝜎𝐶 = 𝑝𝑟

 𝑡
, and a lower stress along 

the axis, 𝜎𝐿 = 𝑝𝑟
2𝑡

. There is no compressive stress. The maximum shear stress is out-of-plane, at a 

diagonal from inside to outside and in the circumpherential direction, with 𝜏𝑀𝑎𝑥 = 𝑝𝑟
2𝑡

. 

Large deformations in pressure vessels. 

We should note that in these calculations, we used r and t in the current condition of stress. This 
means either that we have measured the dimensions (r and t) under stress, or that deformations 
are very small (𝜖 ≪ 1) and we measured 𝑟0 and 𝑡0, the dimensions without stress, so that we can 
assume 𝑟 ~ 𝑟0 and 𝑡~𝑡0. However, if we only know 𝑟0 and 𝑡0, and deformations are large, we 
need to develop new theory and equations to address this. 

Many biological pressure vessels, such as arteries, can stretch to several fold their native size. 
Indeed, they need to do so in order to regulate blood flow to the downstream tissues. Thus, if 
we use the equations provided above and we only know the unstressed dimensions, 𝑟0 and 𝑡0, 

we should check afterwards if 𝜖 = 𝜎
𝐸

= 𝑝𝑟
𝐸𝑡
≪ 1, so 𝑝 ≪ 𝐸𝑡

𝑟
.   If the strain is not small (say, less than 

0.05), then we have violated this assumption. 

Now consider what happens if strains are significant, but the material is still linear.  The 
derivation in Gere is true for the actual radius and thickness of the vessel wall, which are 
related to the nominal (no force) radius and thickness by the strains. If 𝜖𝐶 is the strain in the 
circumferential direction, 𝜖𝑇 is the strain in the thickness, 𝐶0 is the circumference and 𝑡0 the 
thickness of the unstressed vessel, then 𝐶 = 𝐶0(1 + 𝜖𝐶) and 𝑡 = 𝑡0(1 + 𝜖𝑇).  Of course, the radius 
of a vessel is proportional to the circumference (𝐶 = 2𝜋𝑟), so 𝑟 = 𝑟0(1 + 𝜖𝐶), where 𝑟0 is the 
unstressed radius. 

If the material has linear elasticity, we can use Hooke’s law in 3D for triaxial stress (𝜖𝑥 = 1
𝐸
𝜎𝑥 −

𝑣
𝐸
𝜎𝑦 −

𝑣
𝐸
𝜎𝑧), considering 𝜎𝑥 = 𝜎𝐶,   𝜎𝑦 = 𝜎𝐿 = 𝜎𝐶/2, and 𝜎𝑧 = 𝜎𝑇 = 0. Thus:    

𝜖𝐶 =
1
𝐸
𝜎𝐶 −

𝑣
𝐸
𝜎𝐿 =

(1 − 𝑣/2)
𝐸

𝜎𝐶 
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𝜖𝑇 = −
𝑣
𝐸
𝜎𝐶 −

𝑣
𝐸
𝜎𝐿 = −

3𝑣
2𝐸

𝜎𝐶 

Thus for the cylinder: 

𝜎𝐶 =
𝑝𝑟
𝑡

=
𝑝𝑟0(1 + 𝜖𝐶)
𝑡0(1 + 𝜖𝑇) =

𝑝𝑟0 �1 + (1 − 𝑣/2)
𝐸 𝜎𝐶�

𝑡0 �1 − 3𝑣
2𝐸 𝜎𝐶�

 

Finding a solution to this will take more time than we have today, so we consider the situation 
where 𝑣 = 0 as an illustration of the issue at hand. That is, we consider what happens as the 
radius increases with pressure, without adding to the problem by also decreasing the thickness. 

𝜎𝐶 =
𝑝𝑟0 �1 + (1)

𝐸 𝜎𝐶�

𝑡0(1) =
𝑝𝑟0 + 𝑝𝑟0

𝐸 𝜎𝐶
𝑡0

 

𝜎𝐶𝑡0 = 𝑝𝑟0 +
𝑝𝑟0
𝐸
𝜎𝐶 

𝜎𝐶𝑡0 −
𝑝𝑟0
𝐸
𝜎𝐶 = 𝑝𝑟0 

𝜎𝐶 �𝑡0 −
𝑝𝑟0
𝐸
� = 𝑝𝑟0 

𝜎𝐶 =
𝑝𝑟0

�𝑡0 −
𝑝𝑟0
𝐸 �

 

I find it clarifying to rewrite this as follows: 

𝜎𝐶 =

𝑝𝑟0
𝑡0

�1− 𝑝𝑟0
𝐸𝑡0

�
 

Since 𝜖𝐶 = 𝜎𝑐
𝐸

, we can also write 𝜖𝐶 =
𝑝𝑟0
𝐸𝑡0

�1−𝑝𝑟0𝐸𝑡0
�
. 

This equation tells us that when 𝑝𝑟0
𝐸𝑡0

≪ 1, then 𝜖𝐶 ≪ 1.  In this case, the denominator in the 

equation for stress above approaches 1, and we get 𝜎𝐶 = 𝑝𝑟0
𝑡0

, which is the same as when we 

neglected the effect of strain on the geometry (𝑟~𝑟0) which is another way of saying 𝜖𝐶 ≪ 1.  

However, consider what happens at a critical pressure 𝑝𝑐𝑟𝑖𝑡𝑟0
𝐸𝑡0

= 1. Then, 𝜎𝐶 = ∞ . That is, the 

stress (and strain) increase assymptotically with pressure and the vessel explodes, regardless of 
the ultimate stresses the material can withstand. Actually, the material will reach the ultimate 
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stress sometime before this pressure, but we can see that there is no way to subject the vessel to 
a higher pressure than this regardless of the specific value of ultimate stress.   

We can also illustrate this graphically, by plotting the equation for the pressure vessel and the 
equation for the material property on the same stress-strain plot. The solution must satisfy both 
equations, so is the intersection of the two lines. When  𝑝𝑟0

𝑡0
< 𝐸, which is the same as 𝑝𝑟0

𝐸𝑡0
< 1, the 

two lines intersect (left panel below), so there is a solution, and the vessel will not explode as 
long as that solution occurs prior to failure of the material. In contrast, when 𝑝𝑟0

𝑡0
> 𝐸, which is 

the same as  𝑝𝑟0
𝐸𝑡0

> 1, the two lines could never intersect (right panel below), so there is no 

solution, and the vessel explodes. 

 

Nonlinear elasticity in pressure vessels.  

Fortunately, our arteries do not have linear elasticity.  
Arterial walls are made up of elastin fibers in 
addition to wavy collagen fibers. At low strains, the 
material is soft because only the elastin is stretched, 
but at high strains, the buckled collagen fibers 
straighten and are engaged, so the material is stiff.  
This leads to a two-phase elastic behavior, shown here.  In general, materials for which the 
slope of the stress-strain curve increases with strain are called strain-hardening. This is one 
type of nonlinear material behavior, which we will address later this quarter.  

Another material with nonlinear elastic behavior is rubber. Consider what happens when you 
fill a cylindrical balloon with air. When the balloon is partially full, part of the balloon is small, 
while the other part is distended. Clearly, the strain and stress in the two parts of the balloon 
are different. Yet, the pressure inside must be the same as it is all in one compartment. Thus, 
there must be two solutions for strain that satisfy both Laplace’s law �𝜎𝐶 = 𝑝𝑟

𝑡
= 𝑝𝑟0(1+𝜖𝐶)

𝑡0(1+𝜖𝑇) � and 

the nonlinear equation for the stress strain curve that will determine 𝜖𝐶 and 𝜖𝑇 from 𝜎𝐶 and 𝜎𝐿.  


