
BIOEN 326 2014 LECTURE 21: INTRODUCTION TO MOLECULAR BIOMECHANICS 

When an element of materials is exposed to stress, the individual molecules within the materials 
are exposed to mechanical forces. The mechanical and biological response of the material 
depends on how these molecules respond to these mechanical forces. Molecular Biomechanics 
is the study of how biological molecules respond to forces.  

Specifically, we ask how mechanical forces change the length (structure) of the molecule? The 
answer to this question determines the elastic and viscoelastic properties of the material 
composed of these molecules. We will consider two kinds of structural responses to force in 
molecules, and will learn how both depend on the energy landscape of the molecule or bond. 
First, a molecule may undergo a continuous deformation, or a gradual change in length due to 
the elasticity of the molecule. Second, a molecule may undergo a discrete state change, which is 
a sudden change in the conformation of the molecule accompanied by a change in length, such 
as unfolding and refolding of a protein. When a molecule undergoes a conformational change, 
this may affect the elastic properties of the material, but in living materials like cells and tissues, 
it can also change the functional properties of the molecule. In particular, the different states 
may initiate biochemical signaling pathways differently, so mechanical forces affect 
biochemistry, which is the molecular basis of mechanotransduction.  

Principles of Continuous Deformation 

Materials are composed of atoms or molecules held together by molecular bonds, such as van 
der Waals bonds, ionic bonds, or covalent bonds. Many gels and biological materials are 
composed of molecular fibers that are cross-linked together with covalent or noncovalent 
energies. Both of these have in common the presence of nodes 
(atoms, molecules or cross-links) held together by bonds (bonds 
between atoms and molecules, or molecular fibers connecting cross-
links). When the individual bonds stretch, the material stretches. 
Thus, we are interested in the effect of force on the length of the 
bonds. We can calculate this from the energy landscape of the bond 
as follows. We define the bond energy function, 𝑼(𝒓) to be the 
energy of the bond at a length 𝑟. If 𝑟0 is the length where 𝑈(𝑟) is a 
minimum, then we define 𝒓𝟎 as the equilibrium bond length.  By 
the definition of a local minimum, 𝑈(𝑟) > 𝑈(𝑟0) for r near 𝑟0. Figure 1 
illustrates these definitions.   

The bond force is the negative derivative of the energy function: 𝑓𝑏 =  −𝑑𝑈(𝑟)
𝑑𝑟

. If 𝑈 is continuous 
and smooth (as in Figure 1), and 𝑟 is sufficiently near 𝑟0, then by definition of a local minimum 
𝑑𝑈(𝑟)
𝑑𝑟

< 0 for  𝑟 < 𝑟0, 𝑑𝑈(𝑟)
𝑑𝑟

= 0 for  𝑟 = 𝑟0, and 𝑑𝑈(𝑟)
𝑑𝑟

> 0 for  𝑟 > 𝑟0. Since 𝑓𝑏 is the negative of this, 
then 𝑓𝑏 > 0 for 𝑟 < 𝑟0, 𝑓𝑏 = 0 for  𝑟 = 𝑟0, and 𝑓𝑏 < 0 for  𝑟 > 𝑟0, so the bond force acts to restore 
the bond to its equilibrium length.  

For 𝑟 sufficiently near 𝑟0, the second order Taylor expansion approximates the energy function: 

𝑈(𝑟)~𝑈(𝑟0) + (𝑟 − 𝑟0)
𝑑𝑈
𝑑𝑟

(𝑟0) +
1
2

(𝑟 − 𝑟0)2
𝑑2𝑈
𝑑𝑟2

(𝑟0)  

 
Figure 1. Bond energy 
function 
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However, we know that 𝑑𝑈
𝑑𝑡

(𝑟0) = 0, since  𝑟0 is a minimum, and we can define  the bond 

stiffness as 𝑘 = 𝑑2𝑈
𝑑𝑟2

(𝑟0), so 

𝑈(𝑟)~𝑈(𝑟0) +
1
2
𝑘(𝑟 − 𝑟0)2 

That is, we can approximate the energy function as a linear spring within a sufficiently small 
range. This is illustrated in Figure 1 by the solid lines, while outside this range, linearity will be 
lost and we need to consider the full form of the function 𝑈(𝑟) instead of the second order 
approximation. 

Now we ask what happens when we add an externally applied force, 𝑓, to 
the bond. We will use the deformation sign convention, so 𝑓 > 0, when the 
bond is under tension.  We expect this to lengthen the bond. However, we 
defined 𝑓𝑏 as a restoring force created by the bond, not acting on the bond, 
and specifically noted that 𝑓𝑏 < 0 when the bond is longer than its 
equilibrium length. The bond will stop lengthening when the restoring 
force balances the external force, or when 𝑓 = −𝑓𝑏. Thus, the external force 
needed to compress or stretch a bond to a length 𝑟 depends on the energy 
landscape, with: 

𝑓(𝑟) =
𝑑𝑈
𝑑𝑟

 

And for sufficiently small deformations, 𝑓(𝑟) = 𝑘(𝑟 − 𝑟0) = 𝑑2𝑈
𝑑𝑟2

(𝑟0) ∗ (𝑟 − 𝑟0). 

In the next lecture, we will learn how to estimate the Young’s modulus of materials from the 
equilibrium length and stiffness of the bonds. This can help us understand the molecular basis 
of the Young’s modulus. After that, we will see how the nonlinear properties of these bond 
energies can lead to nonlinear elastic behaviors. In short, the structure and energy of the 
molecular bonds that make up a material determine its elastic properties in a somewhat 
predictable way. 

When we apply this theory, we can define ‘bonds’ very loosely. We will consider bonds 
between atoms, such as covalent, ionic, metallic, and van der Waals bonds, when we consider 
non-biological materials. We will also consider bonds between macromolecules or complexes 
when we consider biological materials. For example, many biomaterials, tissues and the 
cytoskeleton of cells are made up of cross-linked polymers, so each polymer region spanning 
two cross-links can be considered a bond. Adhesive proteins form bonds between cells and the 
extracellular matrix.   

Principles of Discrete Deformation 
Some molecules or macromolecular complexes have not one, but two or more low-energy 
states.  For example, proteins may be folded or unfolded, ion channels can be open or closed, 
and many proteins are allosteric, so that they have two distinct folded conformations, with 
different functions. As long as the energy of the two states is reasonably similar, the state of the 
molecule can be regulated by outside perturbations such as binding of other molecules, 
covalent modifications such as phosphorylation or truncation, or exposure to physical stimuli 

 
Figure 2. Bond 
length r vs 
externally 
applied force f. 
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such as voltage differences or mechanical force. Thus, 
the existence of multiple states allows for regulation of 
biological function. Here we learn quantitatively how 
mechanical forces affect macromolecular structure and 
function.  

For our discussion of multi-state molecules or bonds, 
we will use G for the energy function to remind us that 
entropy is an important component of the energy of 
these macromolecular states, so we will use Gibb’s free 
energy to describe the energy of states (𝐺 =  𝐻 − 𝑆𝑇). 
We also use the superscript 0 to indicate standard 
conditions, which for the purposes of this discussion means in the absence of externally applied 
force. We are thus considering a molecule with two states with energy 𝐺10 and 𝐺20. We will 
always use state 1 as the state that is lowest energy in standard conditions, which we will also 
call the native state, so by definition, 𝐺10 < 𝐺20. 

You may recall that the probability 𝑃𝑖 of a state 𝑖 is proportional to the Boltzman factor, 
exp �− 𝐸𝑖

𝑅𝑇
�, where R is the gas constant and 𝐸𝑖 is the energy of a mole of the item in question 

when it is in state 𝑖. Here we are focusing on single molecules, so we will use 𝑃𝑖 ∝ exp �− 𝐺𝑖
𝑘𝐵𝑇

�, 

where 𝑘𝐵 = 𝑅
𝑁𝐴

= 1.38 × 10−23 𝐽/𝐾 is the Boltzman constant, which is the single molecule 

version of 𝑅, and 𝐺𝑖 = 𝐸𝑖/𝑁𝐴, is the energy of a single molecule in state i, and 𝑁𝐴 is Avogadro’s 
number.  

We refer to 𝑘𝐵𝑇 as thermal energy. Most biomechanics calculations and measurements are done 
at either room temperature or body temperature, so it is convenient to memorize or look up 
thermal energy in these two conditions rather than calculating them from the Boltzman 
constant.  Recall that 𝐾 = 𝐶 + 273, so body temperature is 37𝐶 = 310𝐾, and room temperature 
is about 22𝐶 =  295𝐾, so  Thus, thermal energy is 𝑘𝐵𝑇 = 4.1 × 10−21 𝐽 or 𝑘𝐵𝑇 =  4.28 × 10−21 𝐽 
for room and body temperature respectively. For this class, unless you are told otherwise, 
assume a measurement is performed at room temperature. 

Since the probabilities must always sum to one, ∑ 𝑃𝑖𝑖 = 1, the probability of being in state 𝑖 is 
determined by the Boltzman distribution, which is the Boltzman factor divided by the 
partition function Z, which is the sum of all Boltzman factors:  𝑍 = ∑ exp �− 𝐺𝑖

𝑘𝐵𝑇
�𝑖 . That is, 

𝑃𝑖 = exp �− 𝐺𝑖
𝑘𝐵𝑇

� /𝑍. When we want to compare the probability of two states, the Z falls out: 
𝑃20

𝑃1
0 = exp �− 𝐺20

𝑘𝐵𝑇
� /exp �− 𝐺10

𝑘𝐵𝑇
�  = exp �𝐺1

0−𝐺20

𝑘𝐵𝑇
�.  We then define Δ𝐺0 = 𝐺20 − 𝐺10 as the difference in 

energy between the native state 1 and the higher energy state 2 in standard conditions. Note 
that again by definition, Δ𝐺0 > 0, as illustrated in Figure 3.  From this, we can calculate the 
equilibrium constant, 𝐾𝑒𝑞0 = 𝑃20

𝑃1
0 = exp �−Δ𝐺

0

𝑘𝐵𝑇
�. This describes the thermodynamic equilibrium 

between the two states. 

 

Figure 3. Energy landscape for a 
molecule with two states. 
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We also use the energy diagram to calculate the transition rate constants between the two 
states. If 𝐺𝑡0 is the energy of the transition state, then the transition rate constant from state 1 to 
2, 𝑘120 , depends on the height of the energy barrier, Δ𝐺1𝑡0 = 𝐺𝑡0 − 𝐺10 and an Arrhenius cofactor, 

A, described as the attempt frequency: 𝑘120 = 𝐴 exp �− 𝛥𝐺1𝑡
0

𝑘𝐵𝑇
�. A is on the order of 1010 s-1, but is 

different for each reaction, so this equation cannot be used to calculate the exact activation 
energy or the rate constant from the other, but can be used to estimate either. More importantly, 
this equation is used to see how a change like temperature or mechanical force affects a rate 
constant.  Similarly, 𝑘210 = 𝐴 exp �− 𝛥𝐺2𝑡

0

𝑘𝐵𝑇
�.  

The overall rate of transition from 1 to 2 is the rate constant times the probability of being in the 
state 1: 𝑃10𝑘120  At equilibrium, the forward rate must equal the reverse rate, 𝑃20𝑘210 . Thus 𝑃20𝑘210 =

𝑃10𝑘120 . This can be rearranged to show that 𝑃2
0

𝑃1
0 = 𝑘120

𝑘21
0 , which means that 𝐾𝑒𝑞0 = 𝑘120

𝑘21
0 . That is, the 

equilibrium constant is the ratio of the rate constants. 

Mechanics of Discrete State Changes 

Now consider what happens when we add a force, f, across the molecule.  The molecule may 
have some elastic properties that are independent of the state transition, but we addressed those 
in the first part of this lecture and now we only 
concern ourselves with changes in length that are 
associated with the state transition. That is, we are 
interested in changes in length or elastic properties 
between the two states. Specifically, we consider the 
length of each state as a function of force: 𝑥1(𝑓) is the 
length of state 1, 𝑥2(𝑓) is the length of state 2, and 
Δ𝑥(𝑓) = 𝑥2(𝑓) − 𝑥1(𝑓) is the difference in length at the 
force 𝑓.  Note that Δ𝑥(𝑓) > 0 if state 2 is longer in the 
presence of force. Figure 4 illustrates the meaning of 
𝑥1, 𝑥2, and Δ𝑥, by graphing the energy against the 
length of the bond. 

The difference in energy between the two states in the 
presence of force includes the energy required to 
shorten or extend the molecule by that distance Δ𝑥(𝑓), 
which is 𝑓 ∙ Δ𝑥(𝑓).  Thus, Δ𝐺(𝑓) =  Δ𝐺0 −  𝑓 ∙ Δ𝑥(𝑓), as 
illustrated in Figure 5. Recall that energy is in units 
force times distance, so the units are consistent.  Also 
check the signs intuitively: tensile force (𝑓 > 0) favors 
the longer state, and the free energy of the longer state 
relative to the shorter should drop with force if 
Δ𝑥(𝑓) > 0.  

  

Figure 4. lengths in energy 
landscapes 

Figure 5. Effect of force on bond 
energies 
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First we ask how force affects the equilibrium between the two states. The probability of being 
in state i in the presence of force, 𝑃𝑖(𝑓) = exp �Δ𝐺

0− 𝑓∙Δ𝑥(𝑓).
𝑘𝐵𝑇

� /𝑍(𝑓). From this, we can calculate the 

equilibrium constant in the presence of force 𝐾𝑒𝑞(𝑓) = 𝑃2(𝑓)
𝑃1(𝑓) = exp �−Δ𝐺(𝑓)

𝑘𝐵𝑇
� = exp �−Δ𝐺

0+ 𝑓∙Δ𝑥(𝑓)
𝑘𝐵𝑇

�:  

𝐾𝑒𝑞(𝑓) = 𝐾𝑒𝑞0 exp �
𝑓𝛥𝑥(𝑓)
𝑘𝐵𝑇

� 

From this, we can ask when the two states become equally likely. We call this the equilibrium 
force, 𝒇𝒆𝒒. The two states are equally likely when 𝑃2(𝑓)

𝑃1(𝑓) = 1, so when exp �−Δ𝐺(𝑓)
𝑘𝐵𝑇

� = 1,  which is 

when Δ𝐺�𝑓𝑒𝑞� = 0, which is when Δ𝐺0 −  𝑓 ∙ Δ𝑥(𝑓) = 0. Thus, to find the equilibrium force, we 
solve for 

 𝑓𝑒𝑞 ∙ Δ𝑥�𝑓𝑒𝑞� = Δ𝐺0 

Next we apply a similar logic to understand the effect of force on rate constants. Let Δ𝑥1𝑡(𝑓) =
𝑥𝑡(𝑓)− 𝑥1(𝑓) be the length change between state 1 and the transition state at the force f, as 
shown in Figure 4. Then the energy barrier in the presence of force is Δ𝐺1𝑡(𝑓) =  Δ𝐺1𝑡0 − 𝑓Δ𝑥(𝑓) 
and the rate constant with force is  

𝑘12(𝑓) = 𝑘120 exp �
𝑓𝛥𝑥1𝑡(𝑓)
𝑘𝐵𝑇

� 

Thus, the rate is increased if the transition state is longer than the original state (𝛥𝑥1𝑡 > 0) and 
decreased if the transition state is shorter. This makes sense, as force will pull the bond into the 
transition state or away from the transition depending on whether the transition or ground state 
is longer. 

Linear elasticity. If each state exhibits linear elasticity at the force range in question, then each 
state has a spring constant, which we will call and 𝑘1 and 𝑘2.  In this case, 𝑥1(𝑓) = 𝑥10 + 𝑓/𝜅1 
and 𝑥2(𝑓) = 𝑥20 + 𝑓/𝜅2, where 𝑥10 and 𝑥20 are the lengths of the two states without external force. 
We can then calculate that Δ𝑥(𝑓) = 𝑥20 − 𝑥10 + 𝑓 � 1

𝜅2
− 1

𝜅1
�, or  Δ𝑥(𝑓) = Δ𝑥0 + 𝑓 � 1

𝜅2
− 1

𝜅1
�, where 

Δ𝑥0 = 𝑥20 − 𝑥10 is the difference in lengths without external force.  This means that our equation 
for the equilibrium force is 𝑓𝑒𝑞 = Δ𝐺0

Δ𝑥0+𝑓𝑒𝑞�
1
𝜅2
− 1
𝜅1
�
, or 𝑓𝑒𝑞Δ𝑥0 + 𝑓𝑒𝑞2 �

1
𝜅2
− 1

𝜅1
� − Δ𝐺0 = 0, which can be 

solved with the quadratic formula.    

From the equation above, we can see that we can neglect the 𝑓 � 1
𝜅2
− 1

𝜅1
�term if the two states 

have the same spring constant. In this case, Δ𝑥(𝑓) = Δ𝑥0, and 𝑓𝑒𝑞 = Δ𝐺0/Δ𝑥0.  This equation also 
applies if both spring constants are stiff enough that we can neglect the stretch in either state 
when compared to the difference in length between the states: if 𝑓

𝜅1
≪ Δ𝑥0 and 𝑓

𝜅2
≪ Δ𝑥0, then 

𝑓 � 1
𝜅2
− 1

𝜅1
� ≪ Δ𝑥0 and we can neglect the 𝑓 � 1

𝑘2
− 1

𝑘1
� term.     
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Summary: 

If 𝑟 is the length of a bond or molecule, 𝑟0is the equilibrium length (the length at which energy 
is lowest), and 𝑈(𝑟) is the energy function, then... 

1. For sufficiently small deformations, the linear spring approximation can be used for a 
bond or molecular length: 𝑈(𝑟) = 𝑈(𝑟0) + 1

2
𝑘(𝑟 − 𝑟0)2,𝑤ℎ𝑒𝑟𝑒 𝑘 = 𝑑2𝑈

𝑑𝑡2
(𝑟0). 

2. The force needed to hold a bond or molecule at a length r is 𝑓(𝑟) = 𝑑𝑈
𝑑𝑟

~𝑘(𝑟 − 𝑟0) 

If a bond or molecule has two low energy states (two minima in the energy function), and  𝐺10, 
𝐺𝑡0, and 𝐺20 are the energy of state 1, the transition state, and state 2 respectively, then… 

1. The energy difference between the two states is Δ𝐺0 = 𝐺20 − 𝐺10 
2. The equilibrium constant is 𝐾𝑒𝑞0 = 𝑃20

𝑃1
0 = exp �−Δ𝐺

0

𝑘𝐵𝑇
�, and determines the relative 

probabilities of being in each state. 
3. The energy barrier from state 1 to 2 is Δ𝐺1𝑡0 = 𝐺𝑡0 − 𝐺10 
4. The transition rate is 𝑘120 = 𝐴 exp �−𝛥𝐺1𝑡

0

𝑘𝐵𝑇
�, where A is approximately 1010 s-1, and similar 

for 𝑘210 . 

If 𝑥1(𝑓), 𝑥𝑡(𝑓), and 𝑥2(𝑓) are the equilibrium lengths of each of these states at a force f, 
respectively, and Δ𝑥(𝑓) = 𝑥2(𝑓) − 𝑥1(𝑓), and Δ𝑥1𝑡(𝑓) = 𝑥𝑡(𝑓)− 𝑥1(𝑓), then 

1. The probability of being in each state with force is  𝑃2(𝑓)
𝑃1(𝑓) = 𝐾𝑒𝑞(𝑓) = 𝐾𝑒𝑞0 exp �𝑓𝛥𝑥(𝑓)

𝑘𝐵𝑇
� 

2. The equilibrium force at which the two states are equally likely is 𝑓𝑒𝑞 ∙ Δ𝑥�𝑓𝑒𝑞� = Δ𝐺0 

3. The rate constant with force is 𝑘12(𝑓) = 𝑘120 exp �𝑓𝛥𝑥1𝑡
0 (𝑓)

𝑘𝐵𝑇
�, and similar for 𝑘21(𝑓). 

We can usually use the linear approximations for changes in lengths: Δ𝑥(𝑓) = Δ𝑥0 + 𝑓 � 1
𝜅2
− 1

𝜅1
� 

and can sometimes use the constant approximation, when the stiffnesses are the same or are 
very high: Δ𝑥(𝑓) = Δ𝑥0. 
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Example: 

FimH is a bacterial adhesive protein that undergoes an allosteric conformational change that 
increases its affinity for mannose, which is found on host cells. Calculations here refer to the 
structure of the bond between FimH and mannose. This bond has two low energy states. State 1 
is the low-affinity state, and state 2 is the high affinity state. Force affects the transition between 
the states because they are different in length. We can estimate lengths of the low-affinity, high-
affinity and transition state from the structures: 𝑥10 = 10 𝑛𝑚,  𝑥20 = 12.4 𝑛𝑚, and 𝑥𝑡0 = 10.9 𝑛𝑚. 
We can also estimate the transition rates in the absence of force: 𝑘120 = 0.00125 𝑠−1 and 𝑘210 =
0.025 𝑠−1 for the most common variant of FimH. We can assume that all three states have about 
the same spring constant, κ2 = 𝜅1 = 𝜅𝑡.  

a. What fraction of bonds are in the high-affinity state without force?  
b. At what force are the two states equally likely?  
c. At this force, what are the transition rates between the states?  

First, I reword the questions using the notations we learned in lecture: 

a. find 𝑃20 
b. find 𝑓𝑒𝑞 
c. find 𝑘12(𝑓𝑒𝑞),𝑘21(𝑓𝑒𝑞) 

Then I calculate: 

a. I know that 𝐾𝑒𝑞0 = 𝑃2
𝑃1

= exp �−Δ𝐺
0

𝑘𝐵𝑇
�. However, I was given rate constants, not energies, so 

that’s not helpful.  However, I also know that 𝐾𝑒𝑞0 = 𝑃20

𝑃1
0 = 𝑘120

𝑘21
0 .  That’s better; I know 

𝑘120

𝑘21
0 = 0.00125

0.025
= 0.05. Thus, 𝑃2

0

𝑃1
0 = 0.05. To find 𝑃20, I need to use the fact that 𝑃10 + 𝑃20 = 1, 

since we are told the bond just has these two states. Thus, 𝑃20

1−𝑃2
0 = 𝐾𝑒𝑞0 , which rearranges 

to 𝑃20 = 𝐾𝑒𝑞0

1+𝐾𝑒𝑞0
= 0.05

1.05
=0.0048. (In general, when  𝐾𝑒𝑞 ≪ 1, then 𝑝2~𝐾𝑒𝑞.) 

b. To find I might try to use 𝑓𝑒𝑞 ∙ Δ𝑥�𝑓𝑒𝑞� = Δ𝐺0, but I was not told Δ𝐺0. I could calculate 
Δ𝐺0 from  𝐾𝑒𝑞0 , but it will be quicker to use 𝐾𝑒𝑞(𝑓) = 𝐾𝑒𝑞0 exp �𝑓𝛥𝑥(𝑓)

𝑘𝐵𝑇
� and the fact that 

𝐾𝑒𝑞(𝑓) = 1 when 𝑓 =  𝑓𝑒𝑞.  That is, Keq
0 exp �𝑓𝑒𝑞𝛥𝑥(𝑓𝑒𝑞)

𝑘𝐵𝑇
� = 1. To solve this, I need an 

equation for Δ𝑥(𝑓). I know Δ𝑥0 = 𝑥20 − 𝑥10 = 2.4 𝑛𝑚, Δ𝑥(𝑓) = Δ𝑥0 + 𝑓 � 1
𝜅2
− 1

𝜅1
�, and  

κ2 = 𝜅1, so Δ𝑥(𝑓) = Δ𝑥0. Thus, exp �𝑓𝑒𝑞𝛥𝑥
0

𝑘𝐵𝑇
� = 1/Keq

0 , so 𝑓𝑒𝑞𝛥𝑥0

𝑘𝐵𝑇
= ln � 1

𝐾𝑒𝑞0
�, or 𝑓𝑒𝑞 =

𝑘𝐵𝑇
𝛥𝑥0

ln � 1
𝐾𝑒𝑞0
� = 4.1𝐸−21𝐽

2.4𝐸−9𝑚
ln(20) = 5.12𝐸 − 12𝑁. That is, 𝑓𝑒𝑞 = 5.1 𝑝𝑁. 

c. This time I need the force dependence of the rates, so I define Δ𝑥1𝑡0 = 𝑥𝑡0 − 𝑥10 = 0.9 𝑛𝑚, 
and Δ𝑥2𝑡0 = 𝑥𝑡0 − 𝑥20 = −1.5 𝑛𝑚. Again, the spring constants are all equal, so these length 
changes are not affected by force. Note that the two are the same: 

 𝑘12�𝑓𝑒𝑞� = 𝑓120 exp �𝑓𝑒𝑞𝛥𝑥1𝑡
0

𝑘𝐵𝑇
� = 0.00125 ∗ exp �(5.1𝐸−12𝑁∗0.9𝐸−9𝑚)

4.1𝐸−21𝐽
� = 0.003844𝑠−1  

𝑘21�𝑓𝑒𝑞� = 𝑓210 exp �
𝑓𝑒𝑞𝛥𝑥2𝑡0

𝑘𝐵𝑇
� = 0.025 ∗ exp�

(5.1𝐸 − 12𝑁 ∗ −1.5𝐸 − 9𝑚)
4.1𝐸 − 21𝐽 � = 0.003844𝑠−1 
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Appendix:  

As indicated by our figures, the state of a molecule is 
described not by discrete states, but rather along a 
continuum. Why, then, do we only consider the lowest 
energy states? Briefly, because this is here the molecule 
spends most time.  Moreover, we can show that while a 
molecule is in one state, meaning fluctuating around 
the local minima, that the most frequent length of the 
bond is the length at the local minima, which we refer 
to as 𝑟0. 

Here we define 𝐺(𝑟) as the continuous energy function 
for the bond. For a continuous function, the 
probabilities integrate to 1, so ∫ 𝑝(𝑟)𝑑𝑟𝑟 = 1. In this case, the integral version of the Boltzman 
distribution gives the probability density of being at length r: 

𝑝(𝑟) =
exp �−𝐺(𝑟)

𝑘𝐵𝑇
�

∫ exp �−𝐺(𝑟)
𝑘𝐵𝑇

�𝑑𝑟𝑟

 

Regardless of the form of 𝐺(𝑟), we can use the second order Taylor expansion for 𝑟 close to 𝑟0: 
𝐺(𝑟)~𝐺(𝑟0) + 1

2
𝑘(𝑟 − 𝑟0)2, with 𝑘 = 𝑑2𝐺

𝑑𝑟2
(𝑟0). Thus the probability of having length r can be 

approximated as 𝑝(𝑟) = 1
𝑍

exp�−
𝐺𝑈(𝑟0)+12𝑘(𝑟−𝑟0)2

𝑘𝐵𝑇
�. This can be rearranged to 

𝑝(𝑟) =
exp�−𝐺(𝑟0)

𝑘𝐵𝑇
�

𝑍
exp �− (𝑟−𝑟0)2

2𝑘𝐵𝑇/𝑘
�. This resembles the normal (Gaussian) distribution, or Bell 

curve, with mean 𝜇 and a standard deviation 𝜎: 𝑝(𝑥) = 1
𝜎√2𝜋

exp �− (𝑥−𝜇)2

2𝜎2
�, with 𝜇 = 𝑟0 and 

𝜎 = �𝑘𝐵𝑇
𝑘

, and 
exp�−𝐺(𝑟0)

𝑘𝐵𝑇
�

𝑍
= 1

𝜎√2𝜋
= � 𝑘

2𝜋𝑘𝐵𝑇
. Thus 𝑝(𝑟) = � 𝑘

2𝜋𝑘𝐵𝑇
exp �− (𝑟−𝑟0)2

2𝑘𝐵𝑇/𝑘
�, which is the 

normal distribution as shown in the figure.  

 

Thus, in any low-energy state, a bond vibrates with a mean length 𝑟0 and a standard deviation 

𝜎 = �𝑘𝐵𝑇
𝑘

, where 𝑟0 is the length of the local minimum in energy and k is the second derivative 

at this position 𝑘 = 𝑑2𝐺
𝑑𝑟2

(𝑟0). 

 

 Probability distribution for a 
linear spring is the normal 
distribution. 
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