
BIOEN 326 2014 LECTURE 24: STRAIN HARDENING ELASTICITY 

Some materials, including some rubbers, gels, and biological tissues, can withstand large strains 
(often many fold their length) but then recover their original shape upon relaxation. This means 
that these materials are stretching elastically, and have a very high elastic limit, so they are 
referred to as elastomers.  This is very important for materials that have a large working strain 
range. These materials must stretch or compress large amounts in their normal operating 
conditions. For example, arteries must expand and contract with pulsatile flow and to control 
blood flow in different parts of the body.  

However, unlike solids, these materials rarely display linear elasticity throughout this region. 
Instead, they exhibit elastic strain hardening, elastic yielding, or both. These behaviors are 
reversible (elastic) and thus are sharply distinguished from the plastic strain hardening and 
yielding of metals and polymeric solids, in that the latter are irreversible.  

Many elastomers exhibit hysteresis, but unless we note otherwise, we will ignore that by 
assuming that we are pulling slowly enough that the load and unload curves are the same.  

Functional Advantage of Elastic Strain Hardening 

The tangent Young’s modulus is defined as the derivative of the 
stress strain curve: 𝐸𝑇(𝜖) = 𝑑𝜎

𝑑𝜖
(𝜖). If the tangent Young’s 

Modulus increases with strain, we call this strain hardening. 
Materials that exhibit strain hardening within the elastic limit are 
usually are very pliable, to allow large strains, but above some 
point, they become much stiffer. Examples of strain-hardening 
elastomers are collagen networks in the arterial wall, rubbers, 
elastin networks in tissues like skin, and many cross-linked polymer gels including those made 
of elastin, polyethylene glycol (PEG) and collagen.  

In biomechanics, these materials are often said to exhibit a J-shaped stress-strain curve. When 
the material has a very soft initial region before hardening dramatically, this initial region may 
be called the toe region.  

The functional advantage of a strain-hardening material is to allow large deformations within 
the working range, while preventing excess deformation when stress goes beyond the working 
range. For example, while arteries need to expand or contract several-fold to modulate blood 
pressure or blood flow, we don’t want them to expand too much when there is a spike of high 
blood pressure. Strain hardening limits the strain allowed with the stress goes beyond the 
normal working range.  

Molecular Structure of Elastomers. 

There are several structural causes of elastic strain hardening.  

Entropic polymers. 

First, the material may be made up on individual bonds that exhibit a nonlinear strain 
hardening behavior.  Consider a hydrogel, which is a material that is made up of unstructured 
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hydrophilic polymers cross-linked together in an 
aqueous environment. In this case, the cross-links form 
the nodes and the polymer lengths between cross-links 
are the bonds. As we learned before, the effect of force 
on these bonds lengths will determine to a large degree 
the elastic properties of this material. Thus, we 
consider the force-distance dependence, 𝑓(𝑟), of an 
unstructured polymer in an aqueous environment.  

We assume that the polymer does not interact with itself preferably over the water that 
surrounds it, since that would cause it to collapse and exclude the water, making it a solid 
rather than a hydrogel. What determines the shape and length of each polymer in this case? 
Some polymers, like polypeptide or polysaccharide chains, or single stranded DNA, are 
composed of many subunits that can rotate quite freely around the polymer bonds that connect 
the subunits together. In this case, the polymer is equally likely to take on any conformation. 
That is, it is just as likely to take either of the following two forms: 

 
Indeed, the assumption that there are no self-interactions means that the enthalpic energy, H, 
of all conformations is the same as long as each subunit is in its low-energy conformation.  

However, if we define 𝑟 = the end-to-end distance of the polymer, we note that there are many 
conformations that can result in any small value of 𝑟, and look a lot like the conformation on the 
left above, but are not exactly the same. In contrast, only one can result in 𝑟 = 𝐿, where L is the 
length of the polymer if all subunits are laid end-to-end, and there are no conformations that 
result in 𝑟 > 𝐿, unless the subunits themselves are stretching. Thus, if the end-to-end distance 𝑟 
is small, the polymer can still sample many conformations, so has high disorder, or entropy, S. 
Recalling that the Gibb’s free energy is: 𝐺 = 𝐻 − 𝑇𝑆, where T is temperature, we see that the free 
energy of the polymer is lower if the ends are held closer together. Because of this, if we stretch 
an unstructured polymer with an instrument that can measure forces on single molecules (such 
as an Atomic Force Microscope), we observe a strain hardening behavior.  

Because of this, we often call these entropic polymers or entropic springs. 

Worm-Like Chain Model. 

A common model used to describe an entropic polymer is the worm-like-chain (WLC) model. 
This model is best used for fibers that behave like a rigid rod when short, but become flexible at 
long enough distances, because thermal energy is sufficient to overcome the flexural rigidity 
(EI) of the rod, which controls the ability beams to resist bending in response to lateral forces. . 
Recall that thermal energy represents the energy stored due to random kinetic energy, or 
motion, of the atoms or molecules in a system. Thermal energy depends on temperature and 
has the quantity 𝑅𝑇 per mole, or 𝑘𝐵𝑇 per molecule, where R is the gas constant and 𝑘𝐵 is the 
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Boltzman constant. You may recall that the energy per degree of freedom is 1
2
𝑘𝐵𝑇. These 

random motions jostle all atoms and molecules and other nanoscale particles, pushing them 
randomly over any energy barriers that are not much higher than thermal energy.   

Thus, thermal energy will jostle and bend fibers as long as the bending energy is less than 
thermal energy. We define the persistence length, 𝑳𝒑, of a fiber to be the segment length at 
which the two ends of the segment face in different 
directions while the bending energy is around thermal 
energy. Precisely speaking, we define 𝜃 = the change in 
angle between the tangent to the beginning and end of a 
segment (see figure). Now consider the fluctuations in 𝜃 
that occur over time due to thermal jostling, and 
calculation the time-average cosine: 〈𝑐𝑜𝑠𝜃〉. It can be 
shown using statistical mechanics that 〈𝑐𝑜𝑠𝜃〉 decays 
exponentially from 1 to 0 as segment length, 𝑠, increases, 
so we define 𝐿𝑝 such that: 〈𝑐𝑜𝑠𝜃〉 = 𝑒−𝑠/𝐿𝑝. Thus, the persistence length is the segment length at 
which 〈𝑐𝑜𝑠𝜃〉 = 1/𝑒. The persistence length is an intrinsic property of the fiber that depends on 
the structure of the fiber (the flexural rigidity), but not its actual length. It can be shown that 
𝐿𝑝 = 𝐸𝐼

𝑘𝐵𝑇
..  

However, some entropic polymers are more properly considered a freely jointed chain (FJC), 
in which rigid subunits are linked together at hinges that can rotate freely. The subunit length is 
often called the kuhn length, 𝑏. There is a separate model for the FJC, but we will not address 
this here because it turns out that the FJC and WLC have similar mathematical behaviors if we 
define 𝐿𝑝 = 𝑏/2, and because the scientific community tends to use the WLC model for both 
types of fibers. Intuitively, it makes sense that the persistence length is less than the kuhn 
length, because the two segment ends are totally uncorrelated (〈𝑐𝑜𝑠𝜃〉 = 0) at the kuhn length, 
but not at the persistence length. 

  
We define the contour length, 𝑳𝟎, of the fiber to be the distance along all the curves of the fiber, 
which is the same as the end to end distance if the fiber were completely straight. The contour 
length is an extrinsic property of the fiber. If the contour length is shorter than the persistence 
length (𝐿0 ≪ 𝐿𝑝), the fiber is rigid, but a polymer with a contour length in excess of the 
persistence length (𝐿0 ≫  𝐿𝑝) is wiggly and soft.  

Now we define 𝑟 to be the end-to-end distance of the fiber. This depends on the specific 
conformation of the fiber, which is changing all the time due to thermal fluctuations, so it is 
often more useful to consider 𝑟 to be a time-averaged value. Note that 𝑟 is a vector, which 
indicates the length as well as direction from the start to the end of the fiber. The average value 
of this distance is trivial, since the fiber is as likely to go in any direction: 〈𝑟〉 = 0 . Therefore, it is 

𝐿0 ≪ 𝐿𝑝 
𝐿0 ≈ 𝐿𝑝 

𝐿0 ≫ 𝐿𝑝 
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more useful to characterize the end-to-end distance by 𝑟𝑟𝑚𝑠 = �〈𝑟2〉.  Although we skip the 

complicated derivation here, it can be shown that 𝑟𝑟𝑚𝑠 = �2𝐿0𝐿𝑝[1− 𝐿𝑝
𝐿0
�1 − 𝑒

−𝐿0𝐿𝑝�.  If we 

assume that the polymer is soft and wiggly, that is, 𝐿0 ≫ 𝐿𝑝, then this can be approximated as: 
𝑟𝑟𝑚𝑠 = �2𝐿0𝐿𝑝. Thus, this is the value that we would use for 𝑟0 in the estimation of the Young’s 
modulus of a material made of these fibers. Further calculations of the Young’s modulus is left 
for the reader, in this week’s homework. 

Now we consider what happens if we apply external force to 
the fiber. In this case, we define 𝑟 = 〈𝑟〉, is the end-to-end 
distance (in the direction in which force is applied).  The 
WLC model for an entropic polymer provides the following 

equation: 𝑓(𝑟) = 𝑘𝐵𝑇
𝐿𝑝

� 1

4�1− 𝑟
𝐿0
�
2 −

1
4

+ 𝑟
𝐿0
�. (Note that this is 

response to force, so is 𝑓, not 𝑓𝑏).  Using First order 
approximation from the Taylor Expansion, you can show 
that, for sufficiently small r, 𝑓 ≈ 3𝑘𝐵𝑇

2𝐿𝑝

𝑟
𝐿0

. Thus, the spring 

constant for the WLC within its linear range, is 𝑘 = 3𝑘𝐵𝑇
2𝐿𝑝𝐿0

 . It 

turns out that this approximation is fairly good within a fairly large range, 𝑟 < 𝐿0/3.   

One example of an entropic polymer is Tropoelastin, a protein in skin, arteries, lungs and other 
highly elastic tissues. Tropoelastin is 830 amino acid long polypeptide that is rich in proline and 
glycine, which tend to form unstructured random coils rather than beta sheets and alpha 
helices, and does not take on a discrete low-energy structure as do most proteins. An enzyme 
called lysyl hydroxylase catalyzes the covalent cross-linking of lysine residues in tropoelastin to 
create a network called elastin.   

Entropic polymers also describe proteins that normally fold up into a globular structure of 
alpha-helices and/or beta sheets, but have been unfolded by mechanical force. Thus, the 
unfolded state of a protein like titin is actually a worm-like chain; if the force or strain are 
sufficiently low, the protein acts like a soft spring with 𝑘 = 3𝑘𝐵𝑇

2𝐿𝑝𝐿0
, but at higher forces, the 

nonlinearity comes into play. At very high forces, the distance approaches 𝐿0.  

Polypeptide chains have been measured to have a persistence length of anywhere from 0.3 to 
1.0 nm. The contour length per amino acid is 0.3 nm. The variation may be partially due to the 
amino acid composition of the polypeptide, but may also be largely due to differences in 
measurement methods and curve fitting procedures, since the persistence length must be 
calculated indirectly by fitting the WLC equation to experimental data. 
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Other molecular structures that cause strain hardening 

Fiber re-orientation 

Another cause of strain hardening elastic behavior is that a material made up of cross-linked 
fibers can be quite soft while the fibers orient with the direction in which stress is applied, but 
then becomes quite stiff once the fibers are finished reorienting and further strain can only 
occur as a result of stretching of the individual fibers. Consider, for example, stretching a woven 
cloth.  In this case, the Young’s modulus at low forces does not reflect bond length spring 
constants, but rather bond angle spring constants. For many crosslinked polymers, the bond 
angles are very soft. 

 
Thus, even if the hydrogel is composed of fibers that are not entropic polymers and do not 
exhibit strain hardening, the material will often exhibit strain hardening due to this re-
orientation. An example of this is that a woven cloth exhibits strain hardening. (It also exhibits 
anisotropy, since it is stiff when pulled parallel to either fiber direction, and soft but strain 
hardening on the diagonal).  

Mixed materials.  

Another cause of strain hardening behavior is the presence of mixed fiber types and of kinks. 
For example, the ligaments and arteries are made up primarily of collagen fibers. Tropocollagen 
has three polypeptides that form a triple helix. Unlike an alpha helix, the triple helix is not a 
tight coil. Instead, each peptide is nearly elongated, and the three twist slowly around each 
other.  

 
(from http://en.wikipedia.org/wiki/Collagen)  

This structure cannot extend much when stretched, which makes ligaments and arteries fairly 
stiff. However, most tissues made of collagen exhibit a “toe” region at low strains where the 
material is very soft. It turns out that collagen is kinked in the native tissue. Often, elastin in the 
tissue maintains the native shape and pulls the collagen into this kinked conformation, so at low 
strains, the soft elastin stretches and the kinks in the collagen straighten, and the tangent 
young’s modulus is low. However, at higher strains, the collagen itself must stretch, and 
because it is stiffer, the material is also stiffer.  
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Macroscale models of strain hardening. 

To predict the behavior of a nonlinear material in various situations, it is useful to have a 
quantitative model for the stress as a function of strain. This can be used in numerical 
simulations of nonlinear materials, and in some cases, in analytic calculations as well. The WLC 
model only supplies the force-distance relationship of entropic polymers, not the materials 
properties. While we can estimate the Young’s modulus from the WLC model, our assumptions 
in that derivation assume small deformations, and an unrealistic square uniform crystalline 
structure. We thus do not have a model for strain hardening at the materials level.  

Different models have been proposed based on their simplicity and ability to empirically fit 
stress-strain curves of strain-hardening materials. An empiric model (also called a black box 
model) is a model that fits the data but is not based on any theory, and thus does not reflect or 
assume an underlying mechanism. The parameters in an empiric model do not represent any 
physical characteristic which could be measured independently.  In contrast, a parametric 
model (also called a gray box or mechanistic model) is a model based on the underlying 
mechanism, in which the parameters in theory could be measured directly in a different type of 
experiment such they represent a physical property. For example, our model for the Young’s 
modulus of a material, 𝐸 = 𝑘/𝑟0, is a parametric model, in which the parameters 𝑘 and 𝑟0 
represent bond characteristics that can be measured chemically.  

A commonly used empirical model for strain hardening elastic materials was developed by YC 
Fung. Here we consider just the one-dimensional version, neglecting for now lateral stresses 
and strains: 𝜎(𝜖) = 𝐸

𝛽
�𝑒𝛽𝜖 –  1�. This model has two parameters, 𝐸 (in Pa), and 𝛽(unitless). In this 

model, it can be shown that 𝐸 is the Young’s modulus at small deformations and 𝛽 introduces 
the nonlinearity, and determines how much strain is needed before the nonlinear behavior is 
obvious.  

Summary 

• Strain hardening materials are an advantage when the material must be soft to undergo 
large strains during normal working use, but must also resist excess strain that would 
cause damage when stress is abnormally high. 

• Strain hardening can occur at the macroscale because 1) the nanoscale fibers in the 
material are entropic polymers, 2) the fibers in the material orient with the force, and 3) 
the material has more than one type of fiber that dominate stiffness at different strains.  

• The WLC model, 𝑓(𝑟) = 𝑘𝐵𝑇
𝐿𝑝

� 1

4�1− 𝑟
𝐿0
�
2 −

1
4

+ 𝑟
𝐿0
�,  describes the force-extension curve of an 

entropic polymer, which is approximately 𝑓(𝑟) ≈ 3𝑘𝐵𝑇
2𝐿𝑝𝐿0

𝑟 in the linear regime (𝑟 < 𝐿0/3). 

The persistence length can be calculated from the flexural rigidity of a beam: 𝐿𝑝 = 𝐸𝐼
𝑘𝐵𝑇

 

• The Fung model describes the stress-strain diagram of a strain hardening material: 
𝜎(𝜖) = 𝐸

𝛽
�𝑒𝛽𝜖  –  1�.  
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Example. Actin filament as WLC. 

a. Estimate the persistence length of an actin filament. 
b. If a cell is 100um long, could cells use an actin filament to push two ends of the cell 

apart? 
c. If an actin filament were to grow to a contour length of 500 um, what would be the 

tensile spring constant in the linear regime?  
d. how much force would it take to extend such an actin filament to 1/3 of its contour 

length? 
e. How about 99% of its contour length?   

Answer: 

a. We know 𝐿𝑝 = 𝐸𝐼
𝑘𝐵𝑇

. We know that an actin filament is made of globular subunits, so we 

can assume a Young’s modulus of E = 2 GPa. We will estimate the flexural rigidity by 
approximating the cross-section as a circle with diameter 5.5 nm. It is actually 
asymmetric, with a cross-section that is 7 X 4 nm, and is a helix so we cannot simply take 
the orientation with the smaller value of I. So we will estimate it as a circle with a 
diameter that is the average distance across, since we did not learn the more complex 
formula for this class. Thus,  = 𝜋

4
(2.5𝑒 − 9𝑚)4 = 3𝐸 − 35 𝑚4 , and 𝐸𝐼 = 6.1𝐸 − 26𝑁𝑚2 . 

We divide this by 𝑘𝐵𝑇 = 4.1𝐸 − 21𝑁𝑚, to learn that 𝐿𝑝 = 1.5𝐸 − 5𝑚, or 15 𝜇𝑚. 
Experimental measurements have reported persistence lengths of 12 𝑎𝑛𝑑 18 𝜇𝑚.  

b. The persistence length of actin is much less than the length of a cell so an actin filament 
the length of a cell would not be a rigid rod and could not be used to push. This is why 
cells can pull using actin stress fibers, but can only push with actin by cross-linking actin 
into a stiff network in which the bonds between the nodes are tens to hundreds of 
nanometers. 

c. The spring constant of a filament with 𝐿0 = 500 𝜇𝑚 in the linear regime is: 𝑘 = 3𝑘𝐵𝑇
2𝐿𝑝𝐿0

=

8.2𝐸 − 13𝑁/𝑚.  
d. To extend to 1/3, the linear approximation should be OK, so 𝑓 = 𝑘 𝐿0

3
= 3.6𝐸 − 17𝑁. We 

can check this with the exact calculation: 𝑓(𝐿0/3) = 𝑘𝐵𝑇
𝐿𝑝

� 1
4(1−1/3)2 −

1
4

+ 1
3
� = 𝑘𝐵𝑇

𝐿𝑝
(0.65) =

2.6𝐸 − 16 ∗ 0.65 =1.8E-16 N/m, so my estimation produced an error of (0.65-0.5)/0.65 
=23% underestimation.  

e. We clearly need the exact formula for 𝑟 = 0.99𝐿0.  

𝑓(0.99𝐿0) =
𝑘𝐵𝑇
𝐿𝑝

�
1

4(1 − 0.99)2 −
1
4

+ 0.99� = 2500
𝑘𝐵𝑇
𝐿𝑝

= 6.85𝐸 − 13𝑁 

It thus requires only sub-pN forces to extend an actin filament to 99% of contour length. 
It should be remembered, however, that the worm-like-chain model only applies when 
𝐿𝑝 ≪ 𝐿𝑜, so this force is the same independent of contour length, as long as this 
condition holds. Thus, while the actin filament is wiggly, it does not take much force to 
extend one to be nearly straight. 
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