
Bioen 485/585 Lab 0 2013: MATLAB ODE Refresher/Tutorial (optional)

Open the matlab program from the start menu. You will see a window that has a command line.
If you haven’t used matlab at all, so that the instructions here don’t make sense to you, call over
an instructor. If you feel very comfortable with MATLAB, just read this to see if there is
anything new, but if you feel rusty, take time to do the exercises.

Getting help.
Go to “Help>Product Help” and search for “plot”, or write ‘doc plot’ on the command line, and
the help window will pop up to that page with instructions and examples of how to use that
function. Look at the left panel of the help window and note that you can also browse through
sets of related functions.

Scripts, Equations, arrays, and Plotting equations:
Exercise 1: Plot the function ()btety at cos)(−= between t=0 and t=2 at 0.01 increments for a=2
and b=10. (see solutions at the end of the tutorial).

Open a new m-file, and write on the first line:

% plotdecay

Save the file as ‘plotdecay.m’. Now write the rest of a script that will plot the function, save it,
and write ‘plotdecay’ on the command line (don’t write the ‘.m’), which will run through all the
lines of your script in order. First try it on your own using the following hints.
Creating variables and writing simple equations
var = [number]; assigns a number to a letter variable

var = [first number]:[increment]:[last number] creates an array of evenly spaced
numbers between a min and max

Mathematical Operators

[array1].*[array2] (.*) does point-wise multiplication; arrays must be same size.

[array1]*[array2] (*) does matrix multiplication; inner dimensions must be same.

exp([number]) e[number]

Simple plots and axes labeling

figure([figure number]) initializes a new figure

plot([t1 vector],[y1 vector],[t2 vector],[y2 vector]) plot multiple sets of variables on the
same graph

alternatively: plot([t1 vector],[y1 vector])
 hold on allows plotting to the same graph
 plot([t2 vector],[y2 vector])

xlabel(‘[x variable name]’);
ylabel(‘[y variable name]’);

title(‘[plot title]’);

1

Bioen 485/585 Lab 0 2013: MATLAB ODE Refresher/Tutorial (optional)

You should get something like the figure
to the right. If you have problems, note
that you can write a variable name on the
command line and MATLAB will return
the value of that variable. You can also
test a line of code on the command line
before you add it to your script. These can
help with debugging, since it helps you
identify where things went wrong. In case
you need more help, one solution is
below:

% plotdecay
clear all; close all
%in general, start with these to clear all variable and close all
% figures, so your script is not affected by work you did before.

%define constants
a = 2;
b = 10;
t = 0:.01:2;

%write equation
y = exp(-a*t).*cos(b*t);

%plot
figure(1)
plot(t,y)
xlabel 'x';
ylabel 'y';
title 'Decaying Sinusoid Plot';

Functions and loops
In the previous section, you wrote a script and noted that your variables were still defined in
the workspace (which is what you access in the command line) after the program quits, even if
it quits with an error.

The other type of m-file is a function. MATLAB has lots of packaged functions (such as ‘plot’)
but you can also write your own. Functions don’t know the variables that were defined when it
was called, and vice versa, with the exception of inputs and outputs that pass to and from the
function respectively.

Convert your script to a function by deleting the ‘clear all; close all’ phrase, and the lines that
define a and b, and adding a line that defines the m-file as a function and indicates that a and b
will be defined by the user as inputs to the function:

function plotdecay(a,b)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x

y

Decaying Sinusoid Plot

2

Bioen 485/585 Lab 0 2013: MATLAB ODE Refresher/Tutorial (optional)

This must be the FIRST line of the m-file, or you will get an error. This means you cannot define
a function inside a script (but you can call one, of course.) Save the file, and then write on the
command line ‘plotdecay(2,10)’, and you should see the same plot.

Now write ‘plotdecay(1,20)’ and you should see a different decay pattern. Note that the new
plot replaced the old one. Write ‘hold on’ after the plot command, save your function and call it
a few more times with different inputs. You should see all the curves together in one figure. If
you want to clear it, write ‘close all’ to close the figure or ‘hold off’ to replace all previous curves
with the new one.

Now consider if you want to make a figure that shows the effect of changing a variable. You can
do this by altering your function to use a loop to make a curve for each value of a or b. To do
this, embed your ‘y=…’ command and your ‘plot…’ command in a loop. you can use ‘for’, or
‘while’ to make loops. (doc each to find out more if needed.)

example solution, complete with examples of how to label plots with variable label values:

function plotdecay2(a,b)
% plotdecay2
t = 0:.01:2;
 colors = {'k','b','c','g','y','r','m'};
close all;
figure(1);
for i =1:length(a)
y = exp(-a(i)*t).*cos(b(1)*t);
plot(t,y,colors{i}); hold on;
end
% create a legend
for i = 1:length(a)
A{i}=strcat('a = ',num2str(a(i)));
end
legend(A);
xlabel 'x';
ylabel 'y';
title (strcat('Decaying Sinusoid Plot for b = ',num2str(b(1))));

figure(2);
for i =1:length(b)
y = exp(-a(1)*t).*cos(b(i)*t);
plot(t,y,colors{i}); hold on;
end
% create a legend
for i = 1:length(b)
B{i}=strcat('b = ',num2str(b(i)));
end
legend(B);
xlabel 'x';
ylabel 'y';
title (strcat('Decaying Sinusoid Plot for a = ',num2str(a(1))));

Now call ‘plotdecay([1,2,4,8],[5,10,20])’. You should see two figures, each showing the variation
in one variable while the other variable keeps its first value.

3

Bioen 485/585 Lab 0 2013: MATLAB ODE Refresher/Tutorial (optional)

Note that you can often avoid loops by using array multiplication, which is much faster
computationally, but you do need to make sure the inner matrix dimensions agree. Consider the
following, and then call it with ‘plotdecay3([2,2,2],[5,10,20])’

function plotdecay3(a,b)
% plotdecay3
if length(a)~=length(b)
 error('input variable arrays must be same length')
end
t = 0:.01:2;

close all;
figure(1);
y = exp(-a'*t).*cos(b'*t);
plot(t,y)

for i = 1:length(a)
A{i}=strcat('a = ',num2str(a(i)), ', b = ',num2str(b(i)));
end
legend(A)
xlabel 'x';
ylabel 'y';
title 'Decaying Sinusoid Plot';

0 0.5 1 1.5 2
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x

y

Decaying Sinusoid Plot

a =2, b =5
a =2, b =10
a =2, b =20

Solving Differential Equations.

You may have used a differential equation solver before. There are three useful things you will
need for the first weeks of this class. 1) understand what the ODE solver does. The best way to
do this is to write a simple code to solve an ODE yourself, which you can do below. 2) know the

4

Bioen 485/585 Lab 0 2013: MATLAB ODE Refresher/Tutorial (optional)

syntax for using MATLAB’s ODE solving functions. 3) know how to select an ODEsolver and
options to efficiently and accurately solve various problems.

Numerical Integration of a differential equation. Consider a differential equation in one
variable. This will have the general form () ()()tyfdttdy = . If you know you are at position y(t)
at time t, solving a differential equation numerically means you will calculate your position
y(t+Δt) where Δt is a small increment in time. Then you will do this again and again to step
forward in time, predicting the future. Remember from calculus that the definition of a
derivative is:

()
t

tyttydtdy t ∆
−∆+

= →∆
)(lim/ 0 . Thus, a “first-order” estimation of the derivative is

()
t

tyttydtdy
∆
−∆+

≈
)(/ , with the estimation becoming for more accurate as t∆ approaches

zero. Multiply both sides by t∆ to get ())(tyttyt
dt
dy

−∆+=∆ . Then recall that

())(/ tyfdtdy = , where the latter is some known function, so you have
())())((tyttyttyf −∆+=∆ . Now, everything in that equation is a known except y(t+Δt), your

desired value, so put it on the left side and everything else on the right:

() ttyftytty ∆+=∆+))(()(

You can write a MATLAB script that solves for yn iteratively (using a loop of your choosing) for
the following differential equation:
))((/)(10011011 kktpkdttdp +−=
with k01 = 50 sec-1, k10 = 2 sec-1, and the initial value of p1 = 0. Solve for the time period from 0 to 1
second with a time step Δt = 0.001 seconds. This is called numerical integration of a differential
equation. This equation models the probability of a channel being open as a function of time,
where the channel is originally closed but the conditions change at time 0. Plot the proportion of
channels open (p1) against time. Remember to label your axes.

You should be able to solve this particular differential equation analytically to obtain

()()()tkk
kk

k
tp *exp1)(1001

1001

01
1 +−−

+
= , since you’ve taken differential equations. Plot the

analytic together with your numerical solution. Numerical integration should yield a close but
not exact solution. Now try a larger step size, such as Δt = 0.01 or worse yet, 0.04.

Solution:

clear all
close all

%define constants
k01 = 50;
k10 = 2;

5

Bioen 485/585 Lab 0 2013: MATLAB ODE Refresher/Tutorial (optional)

%experiment parameters
totalt = 1;
deltat = 0.001; %the time step

%establish initial value of p1 and the vector of time values
p1(1) = 0;
t = 0:deltat:totalt;

%for loops to complete iterative stepping for two different
conditions
for i = 1:totalt/deltat
p1(i+1) = p1(i)+deltat*(k01-p1(i)*(k01+k10));
end

%analytical solution
p = k01/(k01 + k10) * (1-exp(-(k01 + k10)*t));

%plot p vs t analytical and interative euler and label the graph
plot(t,p1, t,p)
xlabel 'Time(s)';
ylabel 'Fraction of Channels Open';
title 'Channel Opening vs. Time';
legend 'iterative soln' 'analytical soln';

MATLAB ODE solvers. MATLABs ODE solvers (such as ode45) do something similar to this,
but they all use smart time stepping, which means they guess a time step, get the new value,
and check how much the derivative has changed since the previous. If it changed too much,
they use a shorter time step, but if it changed too little, they use a longer one. There is a default
requirement for accuracy, or you can specify one. The different solvers use different algorithms
that are more efficient for different kinds of functions, but all use essentially the same syntax:

to solve a differential equation, first you need to define the differential equation itself in a
different function. For example, for the previous problem, define a function in a separate file.
The inputs go in order: time, y-value, parameter list.

function dy = flowsolve(t,y,k01,k10)
%equation for change in y using passed k01 and k10 values
dy = k01-y*(k01+k10);
end

Now add the following to the end of your script in which you solved the ODE analytically and
numerically already:

timeframe = [0,totalt];
IC = p1(1);
options = [];
[T,Y] = ode45(@ODEname, timeframe, IC, options, k01, k10);
hold on;
plot(T,Y,'r')

6

Bioen 485/585 Lab 0 2013: MATLAB ODE Refresher/Tutorial (optional)

The output will be a time vector and a vector of positions. You can plot(T,Y) and you should get
the same result as previously. Try this. Now try changing the accuracy by setting the relative
tolerance to 10% (1e-1). (The default is 1e-3, or 0.1%).

options = odeset('RelTol', 1e-1);
You pass this newly defined options variable to the solver right after the initial conditions.

Choosing an ODE solver. This is not a numerical methods class, so you don’t need to know
how the different algorithms work. The one thing you should know is to try a stiff solver (they
have an ‘s’ in the name, like ode15s) if the regular solver runs slowly for some problem. Stiff
problems are ones where part of the solution changes quickly and part slowly, and the stiff
solvers use a different time step for the different parts of the solution (roughly). If you want to
learn more about the mechanisms, advantages and disadvantages of different algorithms, see:
http://www.mathworks.com/help/simulink/ug/choosing-a-solver.html.

While you don’t need to know how the different algorithms work, you do need to know that
your conclusions are not affected by your choice of algorithms and the options you used for that
algorithm. This is necessary to verify that your solution does not contain numerical artifacts.
To do this, simply increase the accuracy of your calculations, or switch to a different numerical
method. To change the accuracy, change the options such as RelTol’, ‘AbsTol’ or ‘MaxStep’ with
odeset. If your solution is free of artifacts, these changes should affect the efficiency of the
computations, but should not affect the appearance of the solution in any way that affects your
conclusions or analysis.

7

http://www.mathworks.com/help/simulink/ug/choosing-a-solver.html

