
Introduction to Modeling 
 

Bioengineering includes aspects of both science and engineering. For more scientific questions, 
quantitative models can be used to test a hypothesis that requires a quantitative answer. For 
engineering projects, quantitative models can also be used to design or optimize something that 
is being built. Sometimes there is a fine line between the two, such as when we design an 
intervention into a biological system, such as drugs that affect insulin or thrombotic dynamics, or 
an orthopedic implant that must mechanically interact with the body.  

Mechanistic Models. In some cases, we need to understand the mechanism of a process to 
answer our question, because we are testing a hypothesis about the mechanism or are trying to 
change system behavior by altering one or more components. In this case, it is vital that the 
model correctly reflect the actual underlying mechanism, although it is never necessary or even 
advised to model the entire underlying mechanism. That is, the mechanism must be correct in the 
details which affect the question being asked. We call such a mechanistic model a gray box 
model, because the mechanism is only partially blacked out, thus still partially apparent in the 
model. We also call this a parametric model because the parameters of the model have physical 
meaning that could be independently measured. For example, one might measure the size of a 
component, the reaction kinetics of two chemicals, a diffusion constant, or the stiffness of an 
elastic element.  

Emperical Models. In other cases, it is not necessary to understand the mechanism of a system 
because we will not need to change the system. Instead, we may want to change how the system 
contributes to a larger system. Again, this could involve scientific questions about the role of a 
protein or cell in a larger physiological system. It can also involve engineering questions such as 
how to integrate an op-amp into a circuit, or a protein into a genetic network, to get desired 
behavior of that system. An alternative use of empirical models is to quantitatively compare the 
behavior of different related systems. An empirical model can allow a few parameters to 
concisely describe the difference between two data sets. The word empirical refers to knowledge 
that is based in observation rather than theory, so an empirical model quantitatively describes 
observed behavior, which is sufficient for these kinds of problems. These are also called black 
box models because the underlying mechanism is not visible from the model equations.   The 
advantage of empirical models is that there is no requirement that the mechanism be known, and 
it is often easier to chose a model with fewer parameters.  

In reality, most models have elements of both parametric and empirical models. The behavior of 
an enzyme may be modeled with the Michaelis-Menton Equation, which is a black box model 
about the enzyme structure, and could never be used to predict how point mutations would affect 
reaction kinetics. On the other hand, the same enyzyme may be part of a mechanistic model of a 
genetic network. A model of HIV dynamics may model a T-cell as a black box, but use a gray 
box model of the interactions between cell and virus; for example, the rate of infection of a naïve 
cell could be measured independently and be a parameter in the model.  

Example 1:  Hair cells. We know the viscoelastic response of a hair cell cilia in the inner ear in 
response to a movement of the tympanic membrane. We want to predict how it will respond to 
different types of inputs, including different frequency of vibrations. In this case, a black box 
model of the viscoelastic response is sufficient since we are asking its response to different 
inputs. 
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Example 2: Drug delivery. We make a drug delivery particle that will slowly release a drug over 
time, and we characterize the release profile in vitro experimentally. Now we want to know how 
this release profile will affect drug levels in a patient, since we want to keep the drug in the 
therapeutic window, which is above the therapeutic threshold and below the toxic. To do this, we 
can fit an empirical model to the release profile, and use this within a model of the 
pharmacokinetics of the drug in the body, which addresses the diffusion of the drug in the bodily 
compartments and the clearance of the drug. We find that the release profile is not good enough 
for this purpose, so we want to optimize the release kinetics. For this, the empirical model is not 
sufficient. Instead, we need a parametric model that describes the mechanism of controlled 
release correctly.  

Verification and Validation. For a model to be useful, we need evidence that the model is 
correct.  This is true with all methods; we need to believe that the results are not artifacts of the 
method used, or even caused by a mistake in methodology, but instead reflect the real system of 
interest.  In experiments, we normally incorporate controls to show that an assay is working 
properly, and we often do additional experiments to determine how results in a simple system 
relate to a more complex one. We need to take a similar approach to computational modeling. 
Verification is the process of ensuring mathematical correctness, which you can think of like a 
control. Like experiments, you have higher certainty if you get the same answer in two 
independent calculations (e.g. have two people program the same assumptions into a model), or 
if you can run control simulations where you know what to expect because the system is greatly 
simplified.  Validation is the process of testing the model’s ability to capture the real system, 
which effectively means testing whether the assumptions in the model match experimental or 
clinical data. The most common approach is showing that the model reproduces some known 
behavior. Another approach (for mechanistic models) is to determine the parameters and the 
model structure in independent experiments. A third method is to predict from the model some 
system behavior, and test this after the fact. In general, if the model can predict something that 
was not used, intentionally or unintentionally, in the process of building the model, this is 
considered a relatively strong type of validation, while reproduction of existing data (including 
measurement of parameters) that was used to build the model is considered weak.  

Innovation/Significance/Impact. However, for a model to be useful, we have to be able to learn 
something new from the model. The model might allow us to confirm or test an unknown 
hypothesis. Or, it might be used to help design something. However, if it simply reproduces 
observed behavior, without a plan for how it might then be interpreted or used in future studies, 
it is of limited use. The usefulness often comes from predicting how the system will respond to 
different parameters, or identifying the limitations on parameters necessary to provide observed 
or required behavior. For this reason, we usually perform a systems analysis that addresses 
quantitative questions like these.  

In summary, if a model is too close to what is already known, it has no innovation, but if it is too 
far from what is known, it has no certainty. The challenge in modeling is to design a model that 
can be validated but can still provide critical new information. When the project is well chosen, 
modeling can be a powerful assistance to engineering research. We will provide examples 
throughout this class, but the project will be your chance to plan a good use of modeling.  
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General Approach to Building Models  
 

Before we start building mathematical models, recall our terms about variables and parameters: 

Independent variables are the variables that have predictable values. Typically, ODE systems 
have time as the independent variable, while PDE systems have time and one (e.g. x) or more 
(e.g. x,y,z) position variables. However, this is not required, and some systems have other 
independent variables. The values of the independent variables do not determine the system 
state, but the goal is to define the system state for all relevant values of the independent 
variables. 

Dependent variables are the variables that change dynamically in a system as a function of the 
independent variables. The value of the all the dependent variables collectively describes the 
state of the system.  

Parameters are values that are independently determined, so they do not depend on the dynamics 
of the system. They are often constant, but they do not need to be, since they may change as a 
function of the independent variable. Unlike dependent variables, parameters cannot depend on 
other dependent variables; that is, they may have a predetermined value (fluid velocity may 
change with position, or an external concentration may be switched at some time), but they do no 
change dynamically as a result of the system state.    

Ordinary differential equations (ODEs) have one independent variable (usually time) and one or 
more dependent variables.   

Partial differential equations (PDEs) have multiple independent variables (usually time and 
position), and one or more dependent variables. We will focus on modeling chemical transport 
with convection, diffusion, and reaction terms, so we will consider C1(x,y,z,t).  

Stochastic differential equations (SDEs) are ordinary differential equations in which the 
dependent variables are stochastic variables, because the equations have a stochastic term.General  

Model Building Techniques. For this course, we will learn to build mathematical models and solve 
them numerically for these three types of differential equation models. Computational modeling 
involves the following “DIESE” steps for model building. 

1) Diagram the model. 
2) Identify the parameters, dependent variables, and independent variables. Translate the 

known values and question to be answered in terms of these parameters and variables.  
3) Equations. Write the equations that translate the diagram and any other assumptions into 

mathematical form.  
4) Simplify. (combine equations to remove unnecessary variables) 
5) Error Check. (Verification) 

Once the model is built, you should have the differential equations and initial/boundary 
conditions. We will learn to… 

1) solve these numerically and verify that there are no numerical artifacts in the solution. 
2) when possible, solve the model behavior analytically (at least in part) and verify that the 

numerical and analytic solutions agree. 
3) Perform additional analysis to answer your questions and interpret the key results of the 

in words that are understandable to a non-modeler interested in the original problem. 
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Verification at the Model Building Stage 

As you build your model into mathematical equations, you should verify the equations, which 
means check them for mathematical correctness, and check that they match the assumptions. 
Actually, the main tool for verification is to perform a series of tests for mathematical 
incorrectness. If you find any errors, you can correct them before going further, and otherwise, 
you can proceed with somewhat more confidence.  

A conceptually simple but time consuming verification test is performing the same calculation 
two independent times, and making sure you get the same thing. If you don’t, you know at least 
one of your calculations was incorrect. However, your two calculations may not be independent, 
since you will often repeat the same mistake twice. In a class setting, you can compare your 
answer to that of one or more of your peers, but that won’t be possible when you have a problem 
to solve outside of a class setting. I thus will teach you verification tools that will help you catch 
your own mistakes as you go. We expect you to perform these verifications whether or not we 
explicitly tell you to, so we will detract more points for any mistakes that should have been 
caught with our verification tools, than for other algebraic mistakes. While you can shortcut 
this in class by comparing your calculations with your peers, we do not encourage this because 
this won’t help you when you solve a problem outside a class setting. Instead, after building a 
model, we expect you to perform three verification tests: 

Model Completeness: The minimal verification you should do is to make sure that you have one 
differential equation and one initial condition for each dependent variable. For partial differential 
equations, you will also need a boundary condition equation for each dependent variable on each 
boundary.  

Model Appropriateness. Your model should address the question and assumptions in the model 
description (verbal or diagram) by relating the variables of interest to each other and to the 
parameters described, but not to any parameters or variables that you defined during your 
derivation. In some exceptions, you will keep a parameter or variable you defined in order to 
present a simpler or more understandable form of the model, but in this case, you must include 
their definitions as part of the final model. 

Dimensional Analysis:  Dimensional analysis is a simple verification that should be done when 
the equations are written and/or simplified, but before trying to solve them. This can be done at 
each step, or just upon obtaining the final differential equations, after considering volume issues 
and any simplifications. Dimensional analysis is simply determining the dimensions of each term 
in each equation, and making sure that they are the same within an equation. Recall that a term is 
anything that is added or subtracted, on either side of the equation.  
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Example: A Simple Chemical Reaction Model. ODE, SDE, or PDE?  
We will consider here one simple system and consider the different assumptions we might make 
that require us to use different modeling types and/or different equations. The system is a Surface 
Plasmon Resonance (SPR) experiment, which is a method that measures the change in mass of 
material that is very close to a gold surface, which can be converted to the amount of bound 
material. We can use the SPR to measure chemical reactions in unlabeled sample if we 
immobilize a ligand (L) on the gold surface, and flow through a receptor (R) in solution, because 
the receptor-ligand complex (C) has more mass than the ligand L. Thus, response is proportional 
to the amount of complex formed. 

Problem statement: We immobilize a concentration 𝐿0 (in M) of ligand in the chip. We flow a 
concentration 𝑅0 (in M) of receptor through the chip. How much complex, C, forms as a function 
of time, if the reaction follows simple one-state kinetics, with association rate 𝑘𝑜𝑛, in units M-1s-1 
and dissociation rate 𝑘𝑜𝑓𝑓, in units s-1? 

Model Building Comments: 

Note that we have one dependent variable, C, and four parameters, 𝑅0, 𝐿0, 𝑘𝑜𝑛, and 𝑘𝑜𝑓𝑓. 
Building the model will be easiest if we introduce two more dependent variables, R, and L, 
which were not provided in the problem statement, to represent the concentration of free receptor 
and ligand over time. These are not necessarily the same as 𝑅0  and 𝐿0.  However, we want the 
answer to be an equation in C in terms of the four parameters and of the independent variables 
(time and possibly space), so we may want to remove these additional dependent variables later. 

Now we clarify what the association and dissociation parameters mean: 

reaction A: 𝑅 + 𝐿 𝐶, with rate constant 𝑘𝑜𝑛, in units M-1s-1. 

reaction B: 𝐶  𝑅 + 𝐿, with rate constant 𝑘𝑜𝑓𝑓, in units s-1. 

Converting chemical reactions into equations. The substrates are on the left of the reaction, and 
the products on the right. So reaction A has substrates R and L, and products C, etc. Recall that 
that reactions occur at a rate that equals the rate constant times the concentrations of all 
substrates. That is, reaction A occurs at a rate 𝑘𝑜𝑛𝑅𝐿, where R and L are the concentrations of 
receptor and ligand, respectively, while reaction B occurs at rate 𝑘𝑜𝑓𝑓𝐶, where C is the 
concentration of complex. The effect of each reaction on the reactants is determined by the 
difference between the number of that reactant in the product minus the substrates. Thus, each 
reaction A removes one each of R and L, and adds one C. Thus reaction A contributes - 𝑘𝑜𝑛𝑅𝐿 to 
𝑑𝑅
𝑑𝑡

 and 𝑑𝐿
𝑑𝑡

 and + 𝑘𝑜𝑛𝑅𝐿 to 𝑑𝐶
𝑑𝑡

.   

That’s a good reminder. Now, how do we use this information to build a model that will answer 
the question? This depends on some additional information or assumptions we need to make. 

PDE models. If the receptor binds to immobilized ligand faster than it is replenished by 
convective flow in the device and by diffusion, then the concentration of receptor near the 
surface will be depleted, which will affect the reaction rate. In this case, we need to model the 
transport (convection and diffusion) as well as the reaction. This requires a model that describes 
the concentration of receptor and ligand as a function of position as well as of time, which means 
a partial differential equation (PDE). We will consider such models in weeks 4 and 5.  
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SDE models. If you are using a new technology that detects single particle interactions, you may 
need to model each molecule individually to compare the results to data.  If you need to model 
the movement of single molecules through space, then you will use Brownian Dynamics 
simulations, which model the stochastic position (x(t), y(t), z(t)) and state of an individual 
particle. Brownian dynamics provide a discrete stochastic version of transport/reaction PDE 
equations, and will converge on the PDE solution with large enough numbers, at least for linear 
systems. We will learn this approach in week 6.  

If your new technology does not necessarily detect single molecules, but has nanoliter volumes 
that involve only 100 or so molecules, then the intrinsic noise due to the stochastic rates of 
reaction may have a greater effect on your experimental data than will the noise introduced by 
your measurement methods. In this case, you will want to use stochastic reaction equations, 
which we will learn in week 7. Both types of stochastic simulations are forms of stochastic 
differential equations (SDEs). 

ODE models. On the other hand, if we have large enough numbers of molecules to neglect 
intrinsic stochastic noise, and transport is sufficiently fast relative to reaction rates to neglect 
spatial variations in concentration, then we can use an ODE model. These are much faster to 
build and to solve than PDE or SDE models, so should be used if these assumptions can be 
justified. If you have no idea, then solve the ODE model, and do a sanity check with the solution 
against these assumptions, or compare it to data to see if it fits without the complications of the 
PDE or SDE model.  

Conservation of mass. To write the ODE model equations from the chemical reaction equations, 
we use conservation of mass, which means that the amount of chemical stays the same except for 
what is removed or added by any reaction. Thus, we write an equation that expresses that the rate 
of change for each chemical is equal to the sum of all changes in this chemical due to the various 
reactions. Since mass in conserved rather than volume, we should convert concentrations to a 
mass, so that all terms in the differential equation have units mass (or number) per second. To do 
this, we multiply by the volume appropriate to the reactants in each term in the equation. 
However, in our SPR model, the immobilized ligand complex, and the free receptor are all 
present in the same volume, which we will call v, so there will be a ‘v’ in every term of the ODE, 
and these will all fall out, so we can disregard it, and simply write the equations in terms of 
concentrations. In other words, if (and only if) the volume is the same for all variables, 
conservation of mass becomes conservation of concentrations.  

𝑑𝑅
𝑑𝑡

= 𝑘𝑜𝑓𝑓𝐶 − 𝑘𝑜𝑛𝑅𝐿    Equation 1 
𝑑𝐿
𝑑𝑡

= 𝑘𝑜𝑓𝑓𝐶 − 𝑘𝑜𝑛𝑅𝐿    Equation 2 
𝑑𝐶
𝑑𝑡

= −𝑘𝑜𝑓𝑓𝐶 + 𝑘𝑜𝑛𝑅𝐿   Equation 3 

We don’t need any boundary conditions, but we need initial conditions, one for each variable. 
We use the assumptions to match this. 

𝑅(0) =  𝑅0 

𝐿(0) = 𝐿0 

𝐶(0) = 0  

6 
 



Thus, you start with one reaction equation for each reaction, and divide that up differently into 
one differential equation for each chemical. In general, the number of reaction equations and 
differential equations are not the same.   

Next we look to verify the model: 

1. The model is complete, since we have one ODE and one IC for each dependent variable. 
2. Woops! the model is not appropriate to the problem; we indeed used only the four 

parameters, but we still have the two variables that we defined, and that were not defined 
in the problem statement. We could leave these in the problem, and clarify their 
definition, or can try to simplify them away. 

3. The model passes a dimensional analysis. All equations are similar: 𝑑𝑋
𝑑𝑡

 is M/s.  koff is s-1 
and C is M, so 𝑘𝑜𝑓𝑓𝐶 is also M/s.  kon is M-1s-1, so 𝑘𝑜𝑛𝑅𝐿 is also M/s. Thus, I’ll continue 
with this model to remove the two unnecessary variables.   

We notice that the equations are the same, except for the switch in signs between the complex vs 
reactants. This is not generally the case, and occurs here only because we started with two 
completely symmetrical reactions. So, we are confident that we can remove some variables. To 
do this, you must realize that the total amount of ligand in free and complex form must stay the 
same, because it is immobilized. Thus, 𝐿 + 𝐶 = 𝐿0, or 𝐿 = 𝐶 − 𝐿0, which will remove L.  In 
addition, you must remember the assumption we made when we rejected the PDE model: we 
assumed that the receptor is being replenished by transport faster than it is reacting, so it remains 
at the inflow concentration, 𝑅0. Thus, 𝑅 = 𝑅0. Indeed, our equation 1 above was incorrect for 
this problem, since we did not include the transport when we considered things that affect 
conservation of mass of R. This was not an issue with the conservation of mass equations for L 
and C, since they are both immobilized and cannot enter or leave the system except by reaction.  
Thus, we use these two equations to remove R and L from the ODE for C above. This leaves us 
with the ODE: 

𝑑𝐶
𝑑𝑡

= −𝑘𝑜𝑓𝑓𝐶 + 𝑘𝑜𝑛𝑅0(𝐶 − 𝐿0) 

with IC: 

𝐶(0)  =  0 
Thus we still have one ODE and IC per variable, and the dimensional analysis is the same, but 
now we have a model appropriate to the question. In fact, this catch was huge, since our previous 
version of the model forgot to use the assumption about transport and inflow, and instead was 
assuming a closed system.  

How else might we have caught this mistake (or not made it in the first place?) We need to 
remember to ask whether material can leave or enter the system when writing our conservation 
of mass equations. Indeed, this would cause us to ask immediately about how much material is 
flowing in and flowing out, and thus about the flow rate, and about the spatial variation in 
concentration, which would lead us directly to asking whether we need a PDE model or can add 
an assumption to allow the ODE. Once we made the R = R0 assumption for the ODE in this 
context, we would have realized that we did not need to do conservation of mass or write an 
ODE for R at all. 

 

7 
 


	Introduction to Modeling
	General Approach to Building Models
	Verification at the Model Building Stage
	Example: A Simple Chemical Reaction Model. ODE, SDE, or PDE?

