
The Systems Approach 
In bioengineering, you encounter many types of systems you may need to model. The skills 
needed to build models for the different systems are slightly different, yet have similarities, and 
often yield equations and thus solutions with similar properties. The systems approach helps 
use a similar set of skills to build the models.  

• Mechanical systems 
– orthopedic mechanics 
– muscle contraction 
– cytoskeletal filaments 
– biomaterial mechanics 

• Electrical systems 
– current flow and voltage across neurons & muscles 
– Electrocardiograms, defibrillators, and other devices 

• Fluidic system 
– lung mechanics 
– vascular mechanics 
– microfluidic devices 

• Chemical systems 
– Metabolism 
– Signaling Pathways 
– Drug dosing (“Pharmacokinetics”) 

 

 Mechanical Electrical Fluidic Chemical 

Effort  
Ψ  
 

Force, F (𝑵) Voltage, V (𝑽) Pressure, P (𝑷𝒂) Potential 
(∆concentration) 
µ (𝒎𝒐𝒍/𝑳 = 𝑴) 

Flow  
𝜻  

Velocity, V (𝒎/𝒔) Current, I (𝑨) Volumetric Flow, 
Q (𝒎𝟑/𝒔) 

Flux, J (𝒎𝒐𝒍/𝒔) 

Damping 

R 

Damper, b (𝑁𝑠/𝑚) 

 

Resistor, R 
(ohm =𝑉/𝐴) 

Fluid resistance, 
R (Pas/m3) 

 

Inverse 
permeability, RC 
(𝑠/𝐿) 

Storage 
C 

Spring, k (𝑁/𝑚) 
 
 

Capacitor, C 
(Farad = 𝐴𝑠/𝑉) 

 

Compliance, C 
(m3/Pa) 
 

Volume, V (𝐿) 

Inertance 
L 

Inertia, m 
(kg=𝑁𝑠2/𝑚) 

 

Inductance, L 
(Henry =𝑉𝑠/𝐴) 

 

Fluid inertia, L 
(Pas2/m3) 

 

NONE 
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Generalized system variables 
• Effort = ψ(t) 
• Flow = ζ(t) 

 
Element Equations relate flow to effort: 

• Resistance R (Energy Dissipation)   )()( tRt ζψ =     𝑉 = 𝐼𝑅 
– Effort ~ flow 
– Flow ~ effort 

• Storage C (Potential Energy) ∫=
t

d
C

t
0

)(1)( ττζψ   𝑉 = 1
𝐶 ∫ 𝐼𝑑𝑡 or 𝐼 = 𝐶 𝑑𝑉

𝑑𝑡
 

– Effort ~ integral of flow  
– Flow ~ derivative of effort  

• Inertance L (Kinetic Energy) 
dt

tdLt )()( ζψ =   𝑉 = 𝐿 𝑑𝐼
𝑑𝑡

 

– Effort ~ derivative of flow 
– Flow ~ integral of effort 

 
Conservation equations for flow and effort: 
In addition to the element equations, you need the conservation laws to complete the 
mathematical models. These take the general form of conservation of effort (energy) and 
conservation of flow (mass).  
 

• Mechanical: 
a. Conservation of energy takes the form of Newton’s law: The sum of forces equals 

mass times acceleration. (∑𝐹 = 𝑚𝑎). This means that if the mass can be 
neglected, OR the system is at equilibrium (no acceleration), then the sum of 
forces is zero. In this case, forces in series are equal, so the node is pulled in equal 
and opposite manner, summing to zero. 

b. Conservation of mass (in the form of length): Positions and velocities in parallel 
must be the same, and in series, must add.  

• Electrical: Kirchoff’s laws (or fluid mechanics) 
a. The voltage (or pressure) drop around a loop sums to zero (so the voltage or 

pressure drop in paths in series must be identical.)  
b. The current (volumetric flow) entering any node must sum to zero (or the 

current in must equal the current out). (while charge accumulates at a capacitor 
(compliance), the node doesn’t have capacitance (compliance.) 

• Fluidic: is identical to electrical, with pressure instead of voltage and volumetric current 
instead of ionic current. 

• Chemical: Chemical equations.  
a. conservation of mass: the change in the amount of chemical must equal the sum 

of the fluxes of that chemical.  
Together, the element and conservation equations make up the “E” in DIESE. 
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Example 1: Electrical Model 
Problem:  

You connect a voltage generator to a ground through two resistors (R1 and R2) in series, and 
place a capacitor (C) in parallel with the resistor (R2) closest to ground. Initially, all currents and 
voltages are zero. What is the current through the second resistor? 

Solution:  

1. Diagram the system  

 

2. Identify parameters and variables.  
• The three parameters are 𝑅1, 

𝑅2, and C, given in the problem statement.  
• The voltage signal in the voltage generator is a time dependent parameter (or 

forcing function), which we are calling 𝑉𝑎. 
• We are asked to find the current through the second resister, which we have 

defined in the diagram as 𝐼2. This is our dependent variable of interest. 
• The three remaining variables (𝑉𝑏 , 𝐼1, 𝐼3) are intermediate variables that we would 

love to remove. So four total. 
• Note that we can define the ground as 0, so Vc = 0.  

3. Equations: 
• Now define the element equations: 

(𝑉𝑎 − 𝑉𝑏) = 𝑅1𝐼1 

𝑉𝑏 = 𝑅2𝐼2 

𝐼3 = 𝐶
𝑑𝑉𝑏
𝑑𝑡

 

• Conservation of energy around a loop tells us that the voltage drop across both 
R2 and C is both Vb, which we already used implicitly.  

• Conservation of mass on the node b gives: 

𝐼1 = 𝐼2 + 𝐼3 

• Note that we have 4 equations, and four dependent variables. Initial conditions 
are all zero. So we know we have enough to solve the problem. 

4. Simplify. Substitute some equations for others in order to remove the intermediate 
variables to obtain an equation for the desired unknown, 𝐼2, in terms of the parameters, 
𝑅1,𝑅2,𝐶,𝑉𝑎. This is left as an exercise for the reader. 

𝑑𝐼2
𝑑𝑡

=
𝑉𝑎(𝑡)
𝐶𝑅2𝑅1

−
𝑅1 + 𝑅2
𝐶𝑅2𝑅1

𝐼2(𝑡) 

5. Error Check. 
• Completeness: we have one equation for one unknown variable, 𝐼2, since 𝑉𝑎(𝑡) is 

known. We should add that 𝐼2(𝑡) = 0 is our initial condition. 
• Dimensional analysis: you can quickly confirm that each term has units of A/s.  
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Example 2: Fluidic Model  
Fluidic systems look a lot like electrical models in the systems approach table, but they can be 
difficult to diagram because the same components have both compliance and resistance. The 
compliance in a tubing is generally modeled as a shunt compliance to the pressure outside the 
tubing.  

For example, in my lab, we use a syringe pump attached to a microfluidic flow chamber, which 
has a resistance Rf, through tubing that has a complicance, Ct. The Pump prescribes a flow Q(t), 
but we want to know the flow in the flow chamber, Qf(t), since this is what the cells we study 
experience. Here, we ignore the resistance in the tubing and compliance of the flow chamber 
since they are much less than the values we include. 

Physical set-up: 

 
Diagram: To diagram this, you use the shunt compliance as below. 

 
The resistance and the shunt compliance both connect to the atmospheric pressure, because the 
tubing after the chamber is open, and the tubing before the chamber is surrounded by 
atmospheric pressure. We can use our intuition to note that Qf will approach Q if the syringe 
pump is left for long enough at a constant flow rate. This can help you remember how to 
diagram shunt compliance. The novice often tries to place Rf in series with Ct, but this would 
cause the the flow to go to zero with a constant pressure, which is wrong; the flow should 
instead stabilize at some nonzero value in this condition. 

Identify Parameters and variables. Recall from the problem statement that the pump will 
control Q, and that Qf(t) is important for the experiments, since it is the flow in the chamber 
experienced by the cells, as noted above. Therefore, we want to get rid of intermediate variables 
Qt and P, but keep the parameters Rf and Ct. 
ESE:  
Once diagrammed, fluidic systems are identical to the electrical systems in terms of developing 
the model equations. Thus, converting the diagram above into a mathematical model is left as 
an exercise.  
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Example 3: Mechanical Model of Muscle 
Consider a model for active muscle, as diagrammed 
here, where 𝑓𝑚(𝑡) is the force generated by the 
muscle tissue, b is the damping of this same tissue, 𝑘1 
is the spring constant of the tendon anchoring the 
muscle, and 𝑘2 is the spring constant of the 
sarcolemma surrounding the muscle and tendon. We 
want to know the external force applied by the entire 
system, 𝑓(𝑡), so this is the output, in response to the 
inputs, 𝑓𝑚(𝑡) and x(t), which is the length of the system relative to its length at equilibrium. We use 
the internal sign convention for forces, so that tensile force is positive and compressive negative, 
so that forces on a node must balance in both directions rather than sum to zero.   

Diagram was already provided in the problem statement.  

Identify parameters and variables. We want to have an equation in the variables f, x, and 𝑓𝑚, 
with parameters 𝑘1, 𝑘2, and 𝑏, so we want to remove internal variables 𝑥1 and 𝑥2 

Equations. To build the model, we write the equations: 

𝑓 = 𝑘2𝑥 + 𝑘1𝑥1 (from Newton’s law on the two major branches, plus the element equations) 

𝑘1𝑥1 = 𝑓𝑚 + 𝑏 𝑑𝑥2
𝑑𝑡

 (from Newton’s law and more element equations). 

𝑥2 = 𝑥 − 𝑥1 (from conservation of length) 

This gives us three equations, which is one extra for each unwanted variable, so this is probably 
enough. I also used all the element equations, which is usually necessary.  

Simplify. 

I remove 𝑥2, with 𝑑𝑥2
𝑑𝑡

= 𝑑𝑥
𝑑𝑡
− 𝑑𝑥1

𝑑𝑡
, to get 𝑘1𝑥1 = 𝑓𝑚 + 𝑏 �𝑑𝑥

𝑑𝑡
− 𝑑𝑥1

𝑑𝑡
� 

I remove 𝑥1 by converting 𝑘1𝑥1 = 𝑓 − 𝑘2𝑥 to 𝑥1 = 1
𝑘1
𝑓 − 𝑘2

𝑘1
𝑥 and 𝑑𝑥1

𝑑𝑡
= 1

𝑘1

𝑑𝑓
𝑑𝑡
− 𝑘2

𝑘1

𝑑𝑥
𝑑𝑡

, which I can 

substitute into the equation I just obtained, to get 𝑓 − 𝑘2𝑥 = 𝑓𝑚 + 𝑏 �𝑑𝑥
𝑑𝑡
− 1

𝑘1

𝑑𝑓
𝑑𝑡

+ 𝑘2
𝑘1

𝑑𝑥
𝑑𝑡
� 

I now rearrange this equation to: 
𝑘1
𝑏
𝑓 +

𝑑𝑓
𝑑𝑡

 =
𝑘1
𝑏
𝑓𝑚 +

𝑘1𝑘2
𝑏

𝑥 + (𝑘1 + 𝑘2)
𝑑𝑥
𝑑𝑡

 

Error check.  

It is complete and appropriate because it relates f to fm and x using the given parameters and 
nothing else. (Remember what you decided in the “Identify” step.) 

Dimensional analysis: all terms should have units 𝑁/𝑠, since the second term clearly does 
(df/dt). k’s have 𝑁

𝑚
, b’s have 𝑁𝑠

𝑚
. (Check the systems table on page 1 of lecture 2 if you forget the 

units). First and third terms thus have units 𝑁
𝑚

𝑚
𝑁𝑠
𝑁 = 𝑁/𝑠. fourth term ( 𝑘1𝑘2

𝑏
𝑥) has units 

𝑁
𝑚

𝑁
𝑚

𝑚
𝑁𝑠
𝑚 = 𝑁/𝑠 , and fifth term (𝑘1 + 𝑘2) 𝑑𝑥

𝑑𝑡
 has units 𝑁

𝑚
𝑚
𝑠

= 𝑁
𝑠
. Yes! 
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Example 3: Chemical Model 
Chemical reaction models, like we discussed in lecture 1, are often nonlinear, since the 
concentrations of two variables are multiplied together. However, under some assumptions, 
chemical reactions are linear. For example, in lecture 1, we assumed 𝑅 = 𝑅0, which meant that 
one of the reactants was a constant parameter rather than a variable and the model remained 
linear. Many pharmacokinetic (PK) models describe the movement of drugs between different 
compartments in the body and are also linear models. Thus, we do have linear chemical models. 
For the chemical model to require an ODE instead of a PDE, we must assume all chemicals are 
well-mixed within a compartment to avoid spatial variations within a compartment. However, 
the concentration of chemical may be different between two compartments separated by some 
sort of membrane or barrier. Thus, we refer to chemical models as compartmental models. 
However, each compartment in the model represents one variable, and different variables may 
reflect different chemical species (L vs C) and/or different physical compartments (blood vs 
intestines). 

For the linear chemical system models, we need to remember the meaning of chemical 
potential, 𝝁. This is the push for a chemical to move. If there is a charge on the molecule, then 
voltage affects the chemical potential (e.g. this applies for ion channels). Similarly, a change in 
pressure between two compartments will push a chemical to another compartment. However, if 
there is no such physical effects, then 𝜇 = Δ𝐶, the difference in concentration between the two 
compartments, and thus has units M (molar, or moles/liter). 

 The flux, J, is the movement of chemical between two compartments, and has units mol/s.  

The permeability, P, is the ease of movement between two compartments, and has units L/s. 
This can involve permeability of a barrier to solutes or to movement of the entire fluid between 
the compartments, but the units and equations are the same in both situations. The inverse 
permeability, 𝑹𝑪  =  𝟏/𝑷, is the resistance to movement between two compartments and is in 
s/L. 

When the flux between two compartments is passive, it satisfies the system equations, Ψ(𝑡) =
𝑅ζ(t), which translates to 𝜇 = 𝐽/𝑃, or 𝐽 = 𝑃Δ𝐶. That is, flux is proportional to the chemical 
potential times the permeability. This relationship does not apply to active transport in the form 
of a fluid pump that moves volume from one compartment to another, or a transporter that 
pumps a specific chemical in one direction utilizing an energy source such as ATP.  

 

Problem statement: Consider a PK model where a drug is injected into the blood, and can 
diffuse between blood and interstitial fluid. The injection infuses a dose 𝐷(𝑡) into the blood (in 
moles/hr).  This injection is a forcing function (an input) into the system. If it is a one-time dose, 
we may model it as an initial condition in the blood. The permeability between the blood and 
interstitial fluid is P (in hr/L). Also, drug is cleared from the blood through the kidneys at a rate 
𝑘3 (in 1/hr). This is a one-directional clearance so we don’t worry about the concentration in the 
kidneys, which will be secreted as urine. If the volume of the blood and interstitial fluid, 
respectively, is 𝑉𝐵 and 𝑉𝐼, then how much drug is in the blood at time t? 
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Diagram is on the right. 

Identify.  The variables are 𝐶𝐵 and 𝐶𝐼, the 
amount of drug in the blood and 
interstitial fluid respectively, although 
we don’t need 𝐶𝐼, so it may be possible to 
remove it. The parameters are 𝑃,𝑉𝐵,𝑉𝐼 ,𝑘3 
and the input is 𝐷(𝑡).  

Equations. 

In a chemical model, the element equations are the equations for the flux.  The flux from the 
blood to the interstitial fluid is equal to the difference in concentrations times P. That is,  
𝐽𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 = (𝐶𝐵 − 𝐶𝐼)𝑃. This amount will be subtracted from the blood and added to the 
interstitial fluid. Sanity check: if 𝐶𝐵 > 𝐶𝐼, material should move out of the blood.  

Since we are given a rate constant (units 1/s) for the clearance, the loss of concentration from the 
blood to the kidneys is equal to the concentration in the blood times the clearance rate.  To get 
the flux from the drop in concentration, we need to multiply by the volume. Thus 𝐽𝐶𝑙𝑒𝑎𝑟𝑎𝑛𝑐𝑒 =
𝑘3𝐶𝐵𝑉𝐵, which will be subtracted from the blood. 

Now we apply conservation of mass to each compartment, which creates one ODE per 
compartment. Remember that each term should be in units of mass (e.g. mg or moles, but not 
M) per time, since mass, not concentration is conserved. Thus we need to multiply the 
concentration by the volume on each left-hand term.  

𝑉𝐵
𝑑𝐶𝐵
𝑑𝑡

= 𝐷(𝑡) − 𝐽𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 +  𝐽𝐶𝑙𝑒𝑎𝑟𝑎𝑛𝑐𝑒 

𝑉𝐼
𝑑𝐶𝐼
𝑑𝑡

= 𝐽𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 

Simplify. First replace the fluxes with the element equations we just found  

𝑉𝐵
𝑑𝐶𝐵
𝑑𝑡

= 𝐷(𝑡) − (𝐶𝐵 − 𝐶𝐼)𝑃 −  𝑘3𝐶𝐵𝑉𝐵 

𝑉𝐼
𝑑𝐶𝐼
𝑑𝑡

= (𝐶𝐵 − 𝐶𝐼)𝑃 

Rearrange to obtain the equations with only the derivatives in the left hand side: 

𝑑𝐶𝐵
𝑑𝑡

=
𝐷(𝑡)
𝑉𝐵

− �
𝑃
𝑉𝐵

+ 𝑘3�𝐶𝐵 +
𝑃
𝑉𝐵
𝐶𝐼 

𝑑𝐶𝐼
𝑑𝑡

=
𝑃
𝑉𝐼
𝐶𝐵 −

𝑃
𝑉𝐼
𝐶𝐼 

Error check. The model gives equations for the two variables in terms of each other and the four 
parameters, so is complete and appropriate. Each term has units of mol/(Ls), so passes 
dimensional analysis, although I don’t show the details here.  

Alternative Derivations: 

CB in VB 

 

 

CI in VI P 

P 
k3 

D(t) 

kidneys 
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At this point, you may realize that the parameters 𝑃, 𝑉𝐵 and 𝑉𝐼 show up as the ratios 𝑃/𝑉𝐵 and 
𝑃/𝑉𝐼. We could thus use an alternative representation of this model as follows: 

Let 𝑘1 = 𝑃/𝑉𝐵, and 𝑘2 = 𝑃/𝑉𝐼, and 𝑑(𝑡) = 𝐷(𝑡)
𝑉𝐵

 is the initial concentration right after dosing. Then  

𝑑𝐶𝐵
𝑑𝑡

= 𝑑(𝑡) − (𝑘1 + 𝑘3)𝐶𝐵 + 𝑘1𝐶𝐼 

𝑑𝐶𝐼
𝑑𝑡

= 𝑘2𝐶𝐵 − 𝑘2𝐶𝐼 

This is a better representation of the model, since it has fewer parameters (3 instead of 4), and 
we probably don’t know the volumes anyway. However, we needed to either know 𝑉𝐵 or 
needed to measure the concentration of drug in the blood right after injection to know d(t). 

You may ask why we don’t develop a model using the amounts as variables instead of 
concentrations. Would this be simpler, since we use concentration of mass as the equations? To 
explore this, let’s convert the original 4-parameter model to mass variables. 

Let  𝑄𝐵 = 𝑉𝐵𝐶𝐵 and 𝑄𝐼 = 𝑉𝐼𝐶𝐼, and rearrange terms slightly 
𝑑𝑄𝐵
𝑑𝑡

= 𝐷(𝑡) − �
𝑃
𝑉𝐵

+ 𝑘3�𝑄𝐵 +
𝑃
𝑉𝐼
𝑄𝐼 

𝑑𝑄𝐼
𝑑𝑡

=
𝑃
𝑉𝐵
𝑄𝐵 −

𝑃
𝑉𝐼
𝑄𝐼 

We can turn this into a 3 parameter model with the same substitutions as before. 
𝑑𝑄𝐵
𝑑𝑡

= 𝐷(𝑡) − (𝑘1 + 𝑘3)𝑄𝐵 + 𝑘2𝑄𝐼 

𝑑𝑄𝐼
𝑑𝑡

= 𝑘1𝑄𝐵 − 𝑘2𝑄𝐼 

This time we have a real 3-parameter 
model. Because of this, many people 
express PK models this way. The diagram 
for this model is shown here. If you start 
with a model description in which the 
variables are in amounts and you are 
given rate constants instead of 
permeabilities, then you draw the 
diagram as we see it here. 

The conservation of mass equations then are very easy to write; you write one equation for each 
compartment, and should add one term for each arrow leaving or entering the compartment.  

 

 

blood QB 

 

 

interstitial  
QI 

k1 

k2 
k3 

D(t) 

kidneys 
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