

Discovery of X-rays

- discovered in 1895 by Wilhelm Roentgen in cathode tubes (first Nobel Prize in Physics in 1901)
- attenuated by various materials differently

Revolutionized Medicine:

- first Medical Imaging
- and beginning of scientific medicine

Radiograph of Frau Roentgen's hand with wedding ring "floating" around bone -From Roentgen's announcement letter BioEn 508 - R. E. Schmitz October 4th, 2006

X-ray Production

- Electrons are accelerated to anode by voltage U (Energy E = qU)
- In field of anode atoms, electrons release their energy as

- Yields a continuous X-ray spectrum
- But what are the spikes on the highest energy spectrum?

October 4th, 2006 BioEn 508 - R. E. Schmitz

Closer Look at X-ray Spectrum

· Characteristic radiation from knock-outs in inner electron shell and subsequent filling of the low-energy empty position. Energy emitted is characteristic of the energy levels of the anode material.

X-ray Source Parameters

- Amount of x-ray photons = Cathode current · time [mAs]
- Energy of the emitted photons controlled by voltage between anode and cathode [kV] but a spectrum of energies produced. Often peak photon energy quoted [kVp]

BioEn 508 - R. E. Schmitz

October 4th, 2006

Interaction of Photons with Matter

The dominant photon interaction mechanisms for γ and x-rays:

- Photoelectric absorption
 - Interaction with (initially) bound atomic electron
 - Incident photon disappears
 - Photon energy absorbed by electron, momentum by atom
 - probability increases at: low incident photon energy and high electron density in medium (mass density x Z)
- Compton scatter
 - Interaction with "free" electron (photon energy >> Binding E.)
 - Scattered photon changes direction and loses energy
- Rayleigh (coherent) scatter
 - Interaction with with entire atom or molecule elastic scatter
 - Photon changes direction (though usually by small angle)
- · Pair production
 - γ ray must have sufficient energy to create e⁺ e⁻ pair
 - E_v > 1.022 MeV (> 2 m_e)

BioEn 508 - R. E. Schmitz

October 4th, 2006

Secondary Ionization

10

- In Photoelectric Effect and Compton Scattering, atoms are ionized.
- In pair production, we have two charged particles produced
- These energetic charged particles moving in matter ionize more atoms producing many free electrons
- This secondary ionization is the basis for most detector systems.
- Ionization also leads to breaking molecular bonds basis of most radiation biological effects.
- Dose monitoring necessary when working with radiation

BioEn 508 - R. E. Schmitz

October 4th, 2006

Characteristics of film • Graininess (larger grains for faster film) • Contrast: slope of sensitometric curve (D vs. log(E)) with: D = optical density - darkness of film after exposure E = exposure, E = I_{in source} * duration only useful in linear region. • Speed: inverse of amount of light needed to darken film function of grain size and scatter • Resolution function of grain size and scatter

BioEn 508 - R F Schmitz

X-ray detectors for Computed Radiography

October 4th, 2006

17

log(exposure)

3. Storage phosphors

Special phosphor screen: no immediate absorption of X-ray energy in the phosphor. Stored until stimulated with laser light.

- Incident x-rays boost electrons into conduction band and trap them there (by impurities). Latent image of "stored energy" stable for long time periods.
- Extract stored information by pixelwise scanning with a laser beam which lets electrons fall back into valence band and release visible light.
- Light captured by optic array and passed to photomultiplier, converted to electrical signal.
- · Signal is digitized and recorded.
- Phosphor ready for next use after strong light source irradiation

BioEn 508 - R. E. Schmitz October 4th, 2006

Storage Phosphors - Advantages

- + Much wider useful exposure range than film-screen (no grains must be blackened)
- + Linear exposure range, i.e. no contrast reduction in low- and high-density areas of the image.
 - → Very tolerant to over and underexposure.
- + Image can be post-processed (image enhancement, quantification)
- + Digital image easy to store, transport, distribute...

 Immediate availability through digital image database

BioEn 508 - R. E. Schmitz

October 4th, 2006

X-ray imaging chain

Complete radiographic imaging chain:

- X-ray tube
- Aluminum filter absorbs low-energy photons (beam hardening)
- Collimator limits irradiated area
- Patient attenuates and scatters x-rays
- Collimating scatter grid
 absorbs large-angle
 scatter photons
- Detector

BioEn 508 - R. E. Schmitz

Radiographic Image Quality

20

- Resolution how many line pairs per mm can be distinguished (Ip/mm)
 - quality of anode tip, good angle for good beam focus
 - thicker patients: more scatter, less resolution (use collimator grid)
 - light scattering properties of phosphor
 - film resolution, mainly determined by grain size
 - sampling size for image intensifiers / computed radiography
 - laser spot size for read-out in computed radiography
 Ideally high resolution and high speed, but interdependent

• Noise

- Photon counting is poisson process
- SNR ~ square root number of counts
- faster detector or higher speed less photons needed, lower SNR
- minimum dose requirement

Contrast

- determined by film contrast or can be manipulated in digital methods
- higher contrast lower useful exposure range

Artifacts

- generally artifact-free except for pin-cushion effect and organ overlay

BioEn 508 - R. E. Schmitz October 4th, 2006

Clinical Use - Dynamic images

- Fluoroscopy (real time) with image intensifiers and TV screen for motion investigation or instant images:
 - intraoperative fluoroscopy image guided procedures: surgery, biopsy,
 - angiography imaging perfusion of iodinated blood in vessels
 - barium fluoroscopy of the GI tract barium as oral contrast
 - urography excretion of iodinated fluid through kidney

Cerebral angiogram

BioEn 508 - R. E. Schmitz

October 4th, 2006

2006

Biological Effects and Safety

X-rays passing through tissue deliver energy when attenuated

- → ionization in tissue
 - → chemical changes to cells
 - → biologic damage:

cell may be able to repair itself cell can be destroyed, inable to divide, or divide in uncontrolled ways (tumors)

Absorbed radiation dose measured in Gray (Gy) (energy/mass) 1 Gy = 1 Joule/kg Also determined as organ-dose to a specific organ.

BioEn 508 - R. E. Schmitz

October 4th, 2006

Organ Effective Dose

<u>Biological effect</u> depends heavily on type of irradiation (dose doesn't) → Quality Factor for different radiations:

Equivalent Dose = dose*quality factor, biologically active dose measured in Sieverts (Sv)

Radiation	Xrays	Neutrons	α Particles
QF	1	5-20 depending	20
		on Energy	

<u>Risk</u> for cancer or genetic disorders differs <u>for various organs</u>

→ Tissue weighting factors for different organs

Effective Dose = equivalent dose \ast weighting factor for specific organ Also measured in Sieverts (Sv)

Tissue	Skin/Bones	Bladder	Gonads
WF	0.01	0.05	0.2

Total for all organs adds up to 1.

BioEn 508 - R. E. Schmitz

October 4th, 2006

31

Safety

32

Patients - Doctor's discretion of benefit vs risk individual patient dependent (age etc)

Workers - Time

Distance Shielding

Aim for ALARA As-Low-As-Reasonably-Achievable

BioEn 508 - R. E. Schmitz

October 4th, 2006

Homework

33

- 1. Read chapter 5.
- Find 2 medical images of abnormal anatomy or physiology (pathology) formed using next lecture's modality (X-ray CT).

Place these images in a document.

Write 1-2 brief sentences describing each image.

Write $1\mbox{-}2$ brief sentences describing differences between the images.

BioEn 508 - R. E. Schmitz

October 4th, 2006