Semiconductor Detectors
VS.
Scintillator+PMT Detectors

+ Semiconductors are emerging technology —- Scint.PMT systems relatively
unchanged in 50 years. Nal(Tl) excellent for single-photon, new scintillation
materials being developed for PET (lutetium-based, GSO, LaBr;, LaCl,).

+ Direct detection in semicond. permits superior energy resolution —-
Scint.PMT is indirect (2-step process) with marginal quantum efficiency, which
limits energy resolution.

+ Purity/growth of semicond. is still a challenge (i.e. expensive) —- Scint.PMT is
well established stable technology.

« Semicond. can be finely pixilated for spatial resolution (um theoretically) —-
Scint.PMT pixel size cannot be made arbitrarily small (~ 0.5mm — 1.0mm lower
limit thus far). Note spatial resolution / sensitivity trade-offs!

+ Semicond. cannot be made arbitrarily thick for photon absorption efficiency
(sensitivity) —- Scintillation crystals can be arbitrarily thick. Note spatial
resolution / sensitivity / energy resolution trade-offs!

+ Semicond. require more sensitive electronics generally, and less amiable to
signal multiplexing, resulting in potential need of many, many more processing
channels.
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Interaction Rate and Dead-time
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From: The Essential Physics of Medical Imaging (Bushberg, et al)
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Sample Spectroscopy System
Output
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From: Physics in Nuclear Medicine (Sorenson and Phelps)




Sample Spectrum (Cs-137)
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A. Photopeak

B. Photoelectric with
iodine K-shell x-ray
escape

C. Absorption of lead x-
rays from shield

Note absence of
Compton continuum

Why?




Effects of Pulse Pileup
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From: Physics in Nuclear Medicine (Sorenson and Phelps)

Calibrations

+ Energy calibration (imaging systems/spectroscopy)
— Adjust energy windows around a known photopeak

— Often done with long-lives isotopes for convenience
Cs-137: Ey= 662 keV (close to PET 511 keV), T,,,=30yr

Co-57: Ey= 122 keV (close to Tc99m 140 keV ), T, ,=272d

+ Dose calibration (dose calibrator)

— Measure activity of know reference samples (e.g., Cs-
137 and Co-57)

— Linearity measured by repeated measurements of a
decaying source (e.g., Tc-99m)




Overview of today’s lecture

. Emission vs. Transmission Imaging

. Nature of nuclear radiation

- Isotopes used in nuclear medicine

. Detection methods
. Counting statistics
. Imaging systems

- Planar gamma scintigraphy

Random Processes in Nuclear Medicine

Radiation decay and detection are random processes described by probabilistic
statistical distribution functions; P(x, t,...).

The means and variances of these probability distributions are part of the data
analysis process in nuclear medicine.

Examples governed by quantitative law:
Radioactive decay in time;

P(t)dt = exp(-t/t)dt = probability atom will decay between the times tand t+dt. [t7=T,, /
In(2), T4, = half-life of isotope]

Gamma ray absorption in medium;

P(x)dx = exp(-ux)dx = probability y will be absorbed between x and x+dx. n =
attenuation coefficient of material at specified energy.

Examples governed by empirical law:
Scintillation photons created upon absorption of a gamma ray;

There is a mean number created per unit of absorbed energy, and an associated
variance, for each scintillation material. Have to work with law of averages —-> probabilities.

Scintillation photon creates a photo-electron at a PMT photocathode;

Photocathodes have an intrinsic quantum efficiency (QE) — the chance that any given
photon creates a photo-electron is QE%. After observing 1000s of photons, QE% will have
generated photo-electrons.




Characterizing Random Phenomena (and Errors)

Measures of Central Tendency:
*Mode — Most Frequent Measurements (not necessarily unique)

*Median — Central Value dividing data set into 2 equal parts (unique
term)

n
‘Mean (Arithmetic Mean)  + _ lz .
n i=1 l

Measures of Dispersion:
*Range — Difference of largest and smallest values
*Variance — Measures dispersion around mean:

o= 3 (x, - %
n-1 i=1

-Standard Deviation: o =+/0"

Statistical Models for Random Trials

+ Binomial Distribution

— Random independent processes with two
possible outcomes

* Poisson Distribution

— Simplification of binomial distribution with
certain constraints

- Gaussian or Normal Distribution

— Further simplification if average number of
successes is large (e.g., >20)




Characterizing Random Errors With a Distribution

Binomial Distribution - Independent trials with two possible outcomes

Binomial Density Function: P, ()= n! p(=p)y~
nomia ‘

rl(n—r)
Probability of r successes in n tries when p is probability of success in single trial

X =pn 0 =+/pn(1-p)

Example: What is the probability of rolling a 1 on a six sided die exactly 10 times
when the die is rolled for a total of 24 times.
r=10,n =24, p = 1/6, Py,om(r=10) = 0.0025 ~ 1 in 400

Poisson Distribution - Limiting form of binomial distrioution as p = 0 and n = «»
As in nuclear decay. Have many, many nuclei, probability of decay and observation of

decay very, very small ,

Poisson
r!

—= 2
Only one parameter: 4 = Mean = Variance ---> X =0

Example: A radioactive source is found to have a count rate of 5 counts/second. What is probability of
observing no counts in a period of 2 seconds? o
(=10 exp(~(=10)) _

Prgisson (1 =0)= =0)! =4.54%107

Gaussian (Normal) Distribution

+  Symmetric about the mean

+ Useful in counting statistics because distributions are approximately normal
when n>20

+ Variance and mean not necessarily equal

1 (x—-p)’
P.  (x)= -
Gaussian (.X) o }27’: exp[ 2 J

20

0.14 4

' + Poisson
— Gaussian

0.12 4

0.08

P(r)

0.06

0.04 4

0.02




Variance / Error in Counting Photons

Poisson process: mean = variance
—-> Number measured, N, is best estimate of mean number for that

phenomenon (e.g. N emitted gamma rays per unit time, N scintillation
photons per absorbed gamma ray, ...)
—-> variance = mean = N

—-> standard deviation: 0 =+/variance = \/N
N 1

N AN

Relative error decreases as number of events increases
Emphasizes the importance of detecting as many gamma rays as possible,
and the sensitivity (absorption efficiency) of nuclear medicine cameras

Relative error, e, in counting experiments: =
(signal-to-noise ratio SNR N/c = N )

= Q

+ This applies to individual image pixels in nuclear medicine (also applies to
x-ray imaging, but number of photons is not limited there)
+ Also applies to energy resolution in radiation detection systems

Simple Propagation of Error

+ Quantities of interest are often determined from several measurements
prone to random error.
+ If the quantities are independent, then add independent contributions
to error in quadrature as follows:
The simplest examples are addition, subtraction, and multiplication by a
constant.
If the quantities a and b are measured with known error 6, and 6,, then the
error in the quantities x, y, z when
X=a+b
y=a-»>b
Z = k*a, k = constant (no error)
are:

5,=8, =02 +5
5, =k*s,




Overview of today’s lecture

Emission vs. Transmission Imaging

Nature of nuclear radiation

- Isotopes used in nuclear medicine
Detection methods

Counting statistics

Imaging systems

- Planar gamma scintigraphy

The Planar Gamma Camera

v &=
¥ &

r 'Y )

| I

10



