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Semiconductor Detectors
vs.

Scintillator+PMT Detectors

• Semiconductors are emerging technology —- Scint.PMT systems relatively
unchanged in 50 years.  NaI(Tl) excellent for single-photon, new scintillation
materials being developed for PET (lutetium-based, GSO, LaBr3, LaCl3).

• Direct detection in semicond. permits superior energy resolution —-
Scint.PMT is indirect (2-step process) with marginal quantum efficiency, which
limits energy resolution.

• Purity/growth of semicond. is still a challenge (i.e. expensive) —- Scint.PMT is
well established stable technology.

• Semicond. can be finely pixilated for spatial resolution (µm theoretically) —-
Scint.PMT pixel size cannot be made arbitrarily small (~ 0.5mm – 1.0mm lower
limit thus far). Note spatial resolution / sensitivity trade-offs!

• Semicond. cannot be made arbitrarily thick for photon absorption efficiency
(sensitivity) —- Scintillation crystals can be arbitrarily thick.  Note spatial
resolution / sensitivity / energy resolution trade-offs!

• Semicond. require more sensitive electronics generally, and less amiable to
signal multiplexing, resulting in potential need of many, many more processing
channels.

Sample Spectroscopy System
Hardware

From: The Essential Physics of Medical Imaging  (Bushberg, et al)
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Interaction Rate and Dead-time

paralyzable non-paralyzable

From: The Essential Physics of Medical Imaging  (Bushberg, et al)
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Interactions of Photons with a
Spectrometer

A. Photoelectric
B. Compton + Photoelectric
C. Compton
D. Photoelectric with characteristic

x-ray escape
E. Compton scattered photon from

lead shield
F. Characteristic x-ray from lead

shield

From: The Essential Physics of Medical Imaging  (Bushberg, et al)
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Sample Spectroscopy System
Output

counting mode

Ideal Energy Spectrum

Energy Resolution

From: Physics in Nuclear Medicine (Sorenson and Phelps)

Realistic Energy Spectrum
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Sample Spectrum (Cs-137)

A. Photopeak
B. Compton continuum
C. Compton edge

D. Backscatter peak
E. Barium x-ray photopeak
F. Lead x-rays

Detection efficiency
(32 keV vs. 662 keV)

From: The Essential Physics of Medical Imaging  (Bushberg, et al)

Sample Spectrum (Tc-99m)

A. Photopeak
B. Photoelectric with

iodine K-shell x-ray
escape

C. Absorption of lead x-
rays from shield

Note absence of
Compton continuum

Why?

From: The Essential Physics of Medical Imaging  (Bushberg, et al)
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Effects of Pulse Pileup

From: Physics in Nuclear Medicine (Sorenson and Phelps)

Calibrations
• Energy calibration (imaging systems/spectroscopy)

– Adjust energy windows around a known photopeak
– Often done with long-lives isotopes for convenience 

Cs-137: Eγ= 662 keV (close to PET 511 keV), T1/2=30yr
Co-57: Eγ= 122 keV (close to Tc99m 140 keV ), T1/2=272d

• Dose calibration (dose calibrator)
– Measure activity of know reference samples (e.g., Cs-

137 and Co-57)
– Linearity measured by repeated measurements of a

decaying source (e.g., Tc-99m)
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Overview of today’s lecture

• Emission vs. Transmission Imaging

• Nature of nuclear radiation

- Isotopes used in nuclear medicine
• Detection methods
• Counting statistics
• Imaging systems

- Planar gamma scintigraphy

Random Processes in Nuclear Medicine
Radiation decay and detection are random processes described by probabilistic
statistical distribution functions; P(x, t,…).
The means and variances of these probability distributions are part of the data
analysis process in nuclear medicine.

Examples governed by quantitative law:
Radioactive decay in time;
P(t)dt = exp(-t/τ)dt = probability atom will decay between the times t and t+dt. [τ = T1/2 /

ln(2), T1/2 = half-life of isotope]

Gamma ray absorption in medium;
P(x)dx = exp(-µx)dx = probability γ will be absorbed between x and x+dx.  µ =

attenuation coefficient of material at specified energy.

Examples governed by empirical law:
Scintillation photons created upon absorption of a gamma ray;
There is a mean number created per unit of absorbed energy, and an associated

variance, for each scintillation material.  Have to work with law of averages —-> probabilities.

Scintillation photon creates a photo-electron at a PMT photocathode;
Photocathodes have an intrinsic quantum efficiency (QE) – the chance that any given

photon creates a photo-electron is QE%.  After observing 1000s of photons, QE% will have
generated photo-electrons.
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Characterizing Random Phenomena (and Errors)

Measures of Central Tendency:
•Mode – Most Frequent Measurements (not necessarily unique)
•Median – Central Value dividing data set into 2 equal parts (unique
term)
•Mean (Arithmetic Mean)

Measures of Dispersion:
•Range – Difference of largest and smallest values
•Variance – Measures dispersion around mean:

•Standard Deviation:
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Statistical Models for Random Trials

• Binomial Distribution
– Random independent processes with two

possible outcomes
• Poisson Distribution

– Simplification of binomial distribution with
certain constraints

• Gaussian or Normal Distribution
– Further simplification if average number of

successes is large (e.g., >20)
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Characterizing Random Errors With a Distribution

  

Pbinomial(r)=
n!

r!(n ! r)!
p
r
(1! p)

n!r

Probability of r successes in n tries when p is probability of success in single trial

Example: What is the probability of rolling a 1 on a six sided die exactly 10 times
when the die is rolled for a total of 24 times.

r = 10, n = 24, p = 1/6, Pbinom(r=10) = 0.0025 ~ 1 in 400

Binomial Distribution - Independent trials with two possible outcomes

Binomial Density Function:

Poisson Distribution - Limiting form of binomial distribution as p ⇒ 0 and n ⇒ ∞
As in nuclear decay.  Have many, many nuclei, probability of decay and observation of
decay very, very small

  

PPoisson (r)=
µr exp(!µ)

r!

Only one parameter: µ = Mean = Variance --->

  

x = !
2

  

! = pn(1" p)

  

x = pn

Example: A radioactive source is found to have a count rate of 5 counts/second.  What is probability of
observing no counts in a period of 2 seconds?

  

PPoisson (r = 0)=
(µ =10)r= 0 exp(!(µ =10))

(r = 0)!
= 4.54 *10!5

Gaussian (Normal) Distribution

• Symmetric about the mean
• Useful in counting statistics because distributions are approximately normal

when n>20
• Variance and mean not necessarily equal
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Variance / Error in Counting Photons
Poisson process: mean = variance

—-> Number measured, N, is best estimate of mean number for that
phenomenon (e.g. N emitted gamma rays per unit time, N scintillation
photons per absorbed gamma ray, …)

—-> variance = mean = N
—-> standard deviation:

Relative error, e, in counting experiments:
(signal-to-noise ratio SNR N/σ =         )

Relative error decreases as number of events increases
Emphasizes the importance of detecting as many gamma rays as possible,
and the sensitivity (absorption efficiency) of nuclear medicine cameras

  

! = variance = N

• This applies to individual image pixels in nuclear medicine (also applies to
x-ray imaging, but number of photons is not limited there)

• Also applies to energy resolution in radiation detection systems
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• Quantities of interest are often determined from several measurements
prone to random error.

• If the quantities are independent, then add independent contributions
to error in quadrature as follows:

The simplest examples are addition, subtraction, and multiplication by a
constant.

If the quantities a and b are measured with known error δa and δb, then the
error in the quantities x, y, z  when

x = a + b
y = a – b
z = k*a, k = constant (no error)

are:

Simple Propagation of Error
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δz = k*δa
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Overview of today’s lecture

• Emission vs. Transmission Imaging

• Nature of nuclear radiation

- Isotopes used in nuclear medicine
• Detection methods
• Counting statistics
• Imaging systems

- Planar gamma scintigraphy

The Planar Gamma Camera

Siemens e.cam


