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Figure 1: Physics-based simulation of locomotion for a variety of creatures driven by 3D muscle-based control. The synthesized controllers
can locomote in real time at a range of speeds, be steered to a target heading, and can traverse variable terrain.

Abstract

We present a muscle-based control method for simulated bipeds
in which both the muscle routing and control parameters are opti-
mized. This yields a generic locomotion control method that sup-
ports a variety of bipedal creatures. All actuation forces are the
result of 3D simulated muscles, and a model of neural delay is in-
cluded for all feedback paths. As a result, our controllers gener-
ate torque patterns that incorporate biomechanical constraints. The
synthesized controllers find different gaits based on target speed,
can cope with uneven terrain and external perturbations, and can
steer to target directions.
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1 Introduction

Physics-based simulation is an established technique for the auto-
matic generation of interactive natural-looking motion. To extend
this approach to actively controlled virtual characters has been a
longstanding research goal, in which tremendous progress has been
made in recent years. Locomotion controllers have been developed
that robustly deal with changes in character morphology, external
perturbations and uneven terrain.

Unfortunately, in many cases the resulting motions are still not as
natural as we would like. One common approach that can help
improve the quality of the simulated motions is to use motion cap-
ture data as part of the control strategy. However, such methods
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are limited to characters and motions for which data is available.
Furthermore, the biomechanical constraints that are implicit in cap-
tured motions are not preserved during the motion editing or motion
retargeting that is often required to leverage limited motion data.
Another approach for improving the motion quality has been to use
optimization to help shape the motion, such as optimizing for min-
imal energy as well as task objectives. However, in the absence
of biomechanical constraints, optimization objectives may lead to
unnatural torque patterns or require cumbersome manual tuning.
Commonly implemented joint limits and torque limits remain a
crude approximation of the motion constraints that are implicit in
articulated figures driven by musculotendon units.

More recently, emerging from biomechanics research, researchers
have begun to develop methods that include biomechanical con-
straints into the simulation. Using such an approach, the natural
gaits of various animals can be simulated without the need for mo-
tion data. However, the principal focus to date has been on model-
ing human motion, and the solutions remain limited in their loco-
motion abilities and robustness.

In this paper, we make the following contributions:

• We develop a control method and optimization strategy for
the simulated locomotion of fully 3D bipedal characters, in-
cluding imaginary creatures, that are driven entirely by sim-
ulated muscle-based actuation. The method produces robust
locomotion at given speeds to target directions and does not
require pre-existing motion data. The characters can further
cope with modest variations in terrain.

• We introduce muscle routing optimization as an important
feature that enables and simplifies the design of muscle-based
control strategies for a variety of character morphologies. In-
stead of needing an exact musculoskeletal model, our method
requires only an approximate template of where muscles are
attached and routed. The specific geometry is then optimized
within the specified ranges allowed by the template, along
with the parameters related to the muscle control. This ap-
proach enables the discovery of efficient muscle routings for
creature models for which there exist no real-world data to
draw from.

• We make use of a muscle-based approximation to Jacobian
transpose control as a core component of our framework. This
enables a more creature-generic and motion-generic control
architecture and is applied to the majority of joints in our crea-
ture models.
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2 Related Work

Methods for physics-based character animation that use forward
dynamic simulations have been a research focus for over two
decades, most often with human locomotion as the motion of inter-
est. A survey of the considerable body of work in this area can be
found in [Geijtenbeek and Pronost 2012]. A rigid-link articulated
figure is typically driven by treating the joint torques at each time
step as free variables, constrained by joint angle limits and joint
torque limits. The underlying balance strategies commonly make
direct or indirect use of foot placement, e.g., [Raibert and Hodgins
1991; Hodgins et al. 1995; Laszlo et al. 1996; Yin et al. 2007; Tsai
et al. 2010]. Basic locomotion capabilities have been extended in
a variety of ways, including coping with terrain variations, charac-
ter morphology variations, flexibly parameterized walking and run-
ning, new types of motions, new control abstractions, and methods
for flexible motion sequencing. Examples here include [Faloutsos
et al. 2001; Wang et al. 2009; Coros et al. 2009; Jain et al. 2009;
Wang et al. 2010; Wu and Popovic 2010; Mordatch et al. 2010;
de Lasa et al. 2010; Ye and Liu 2010; Coros et al. 2010; Jain and
Liu 2011; Liu et al. 2012].

The use of motion capture data can greatly help in achieving natural
physics-based locomotion. It can be used as a reference trajectory,
as a well-chosen initialization point for an optimization, or as an ex-
ample of an optimal solution from which to then generalize further
solutions. A number of approaches exploit motion data to achieve
torque-based control of simulated human motions [Liu et al. 2005;
Sok et al. 2007; Yin et al. 2007; da Silva et al. 2008a; da Silva
et al. 2008b; Muico et al. 2009; Lee et al. 2010; Kwon and Hod-
gins 2010; Jain and Liu 2011; Muico et al. 2011; Geijtenbeek et al.
2012]. Many of these methods further tackle aspects of parameteri-
zation, other classes of motion, and choice of feedback abstraction.

In reality, joint torques cannot be commanded at will and must in-
stead arise from muscles that have their own activation dynamics,
force production behavior, and moment arms that change over time.
They also often do not provide direct control over individual de-
grees of freedom, as is assumed with computed torque methods.
This is because a single muscle may span multiple joints, and a
single joint may be spanned by multiple muscles. Biomechanics
research has developed muscle-based approaches for the simula-
tion of a variety of human and animal motions, including lizards
[Ijspeert et al. 2007], cat hind limbs [Maufroy et al. 2008], human
jumping [Pandy et al. 1992], human pedaling [Thelen et al. 2003],
and human gait [Taga 1995; Anderson and Pandy 2001; Geyer
and Herr 2010; Ackermann and van den Bogert 2012]. Relatedly,
muscle-based simulations are being explored in the computer ani-
mation literature, where they are applied to modeling human hand
motion [Tsang et al. 2005; Sueda et al. 2008], human upper body
motion [Lee et al. 2010], and to evaluating the realism of human
motion trajectories [Geijtenbeek et al. 2010]. Most notably, the
work of Geyer and Herr [2010] has been used as the basis to an-
imate a full 3D humanoid character by Wang et al. [2012]. The
motion controls are optimized with respect to an objective function
that combines metabolic energy consumption and several walking-
task-specific terms related to head stability and torso orientation.
Together with muscle reflex models, this then produces stable for-
ward dynamics simulations of walking at a variety of speeds that
are shown to closely match human walking data.

While the majority of work on physics-based character simulation
is focused on modeling human motion, control strategies have also
been developed to drive simulations of block-based creatures [Sims
1994], swimming creatures [Grzeszczuk and Terzopoulos 1995;
Tan et al. 2011], walking birds or other fantastical bipeds [Coros
et al. 2009; Coros et al. 2010; de Lasa et al. 2010], and quadrupeds
[Coros et al. 2011]. Physically-plausible gaits are developed de

novo, i.e., without motion capture data, by Wampler et al. [Wampler
and Popović 2009; Wampler et al. 2013]. Alternate kinematic ap-
proaches are developed by Hecker et al. [2008] and Kry et al.
[2009] for producing visually plausible gaits for arbitrary creature
morphologies.

Our work is most closely related to the impressive state-of-the-art
work by Wang et al. [2012]. We share many of the goals of this
recent work, but with the following notable differences: (1) The
models we develop use 3D muscles to drive all the motion of the
entire body. In comparson, Wang et al. [2012] use planar mus-
cles restricted to the sagittal-plane to control the lower body, and
use classic torque-based methods to control the coronal lower-body
motion and the entire upper body. Our models are entirely muscle
driven. (2) Our framework optimizes for the best muscle routing
geometry. As such, the user only needs to provide an approxi-
mate template for muscle insertions and attachments. This is of
particular utility when designing imaginary creatures or dispropor-
tional humans, for which these parameters are not known. Proper
routing of 3D muscles can greatly simplify control, and we show
that this aspect of the optimization significantly contributes to the
ability to synthesize plausible motions. (3) We optimize for mus-
cle physiological properties, including rest length and maximum
force. These are not known a priori when designing new creatures.
(4) Our control system relies heavily on target features (positions
and orientations of links), and uses a muscle-based Jacobian trans-
pose approximation to help compute target muscle activations. This
contributes towards a more generic control framework. In contrast,
the feedback rules of Wang et al. [2012] are tailored around the
human-specific reflex model developed by Geyer and Herr [2010].
(5) Our controllers are robust enough to traverse moderate terrain
variations and can perform shallow turns. (6) Most significantly,
our method can be applied to automatically achieve different gaits
for a variety of creatures, including imaginary creatures.

We note that the above differences are not always entirely ben-
eficial. Because our framework targets a wider variety of crea-
tures with a control architecture that attempts to be more generic
rather than being tailored to human models, our basic approach may
not achieve the same human motion fidelity as the human-specific
method and results presented by Wang et al. [2012]. However, re-
searchers focusing on achieving a more faithful human gait (or any
other gait) can easily extend our basic approach by adding domain-
specific target features, objective terms or feedback rules.

3 Musculoskeletal Model

Our creature model consists of a hierarchy of rigid bodies, which
are actuated using an established dynamic muscle model [Geyer
and Herr 2010]. The biomechanical constraints incorporated in this
model ensure the creation of realistic and smooth torque patterns.
More specifically, it models the physiological properties of con-
tractile muscle fibers and tendons (contraction dynamics), and the
electro-chemical process that leads to changes in activation state
(activation dynamics).

3.1 Muscle Contraction Dynamics

Muscles generate forces through muscle fibers contracting, based
on the current activation state of the muscle. The dynamics of con-
traction is commonly modeled using a three element structure, also
known as Hill-type muscle model (see Figure 2, top). It consists of
the following elements:

• A contractile element (CE) that represents the muscle fibers
that contract based on the muscle activation state.
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Figure 2: Top: The three components of a Hill-type muscle. Bot-
tom: Normalized force-length and force-velocity relations of the
contractile element.

• A parallel elastic element (PEE) that represents the passive
elastic material surrounding muscle fibers.

• A serial elastic element (SEE) that represents the tendons that
connect the muscle to the bones.

The force produced by the CE, FCE, depends on the constant max-
imum isometrical force for the muscle, Fmax, the muscle activation
a, fiber length LCE, and contraction velocity VCE:

FCE = a Fmax fL(LCE) fV(VCE) (1)

where fL describes the relationship between force and length of
a muscle, and fV describes the relationship between force and the
current contraction velocity (see Figure 2, bottom). Roughly speak-
ing, a muscle can produce more force when its length is closer
to its optimal length, and produces less force if it is contracting
faster. The maximum isometric force Fmax is a constant that we
find through optimization.

The passive forces produced by the elastic elements, FPEE and
FSEE are modeled as non-linear springs based on their length:

FSEE = fSEE(LM − LCE) (2)
FPEE = fPEE(LCE) (3)

where fSEE and fPEE are non-linear force-length relations and LM

represents the total muscle length, from which the length of the
SEE can be derived. Analytical forms of fSEE, fPEE, fL and fV

are described in [Geyer et al. 2003].

As the SEE is wired to the CE and PEE in series, the total muscle
force FM is subject to the force balance equation

FM = FCE + FPEE = FSEE (4)

The length of the CE (from which the SEE length is derived) is
initialized to be its optimal length, Lopt

CE , which in combination with
the tendon slack length Lslack

SEE defines the muscle rest length Lrest
M :

Lrest
M = Lslack

SEE + Lopt
CE (5)

Both Lopt
CE and Lslack

SEE are important for the dynamic behavior of
the muscle [Zajac 1989] and are subject to optimization. During
simulation, activation state a and total muscle length LM are input
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Figure 3: Muscle attachment points that will be optimized within a
constrained region. In this example, muscle point p1 is constrained
to a 2D surface, muscle point p2 is constrained to a 3D volume, p3

is fixed, and p4 is constrained to a line. The actual areas used in
our experiments are shown in Figure 8.

parameters. The first is the result of activation dynamics (§3.2), the
second is determined by the geometry of the current pose (§3.3).
The muscle state parameter LCE is updated through integration of
the contraction velocity VCE, which is derived from Equations (1)
and (4), by inverting the force-velocity relation fV:

∂LCE

∂t
= f−1

V

[
FSEE − FPEE

aFmaxfL(LCE)

]
(6)

For a detailed description of this procedure we refer to Geyer and
Herr [2010].

3.2 Muscle Activation Dynamics

The activation state a of a muscle is altered as the result of a rel-
atively slow electro-chemical process, based on a neural excitation
signal u, which is output by the control system. This process is
referred to as the activation dynamics and is modeled as:

∂a

∂t
= ca(a− u) (7)

in which ca is the constant activation and deactivation rate. In our
model we use ca = 100s−1, following Wang et al. [2012].

3.3 Muscle Geometry and Skeleton Interaction

The skeleton of a character and its muscles have a two-way inter-
action: muscles apply forces that change the skeleton pose, while
the skeleton pose fully determines muscle length LM, which then
influences the contraction dynamics. The path of a muscle is deter-
mined by the locations where its tendons are attached to the bones,
the bony landmarks around which the muscle wraps, and the time-
varying poses of the joints that the muscle spans. In our model, we
define a muscle path as a set of line segments connecting a fixed
set of via points, which can be regarded as frictionless loopholes
through which the muscle slides. This model is a simplification
that has the advantage of high performance (which we require for
our purpose) and omits the need to model skeleton geometry around
which the muscles should wrap.

Muscle Geometry The routing of any muscle M is defined
through a vector of n attachment points, [{b1,p1} . . . , {bn,pn}],
each of which is defined by an offset point pi and a body bi to
which the point is attached (see Figure 3). Each attachment point
pi is defined as a fixed offset in the coordinate frame of body bi; it
translates and rotates along with the body it is attached to. Multiple
points can be attached to a single body. The first and last point,
p1 and pn, represent the locations where the muscle tendons are
attached to the skeleton, while the others are via points.
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Figure 4: Example muscle path with four attachment points, three
bodies and two joints.

The total muscle length LM is equal to the summed lengths of the
n− 1 muscle segments, [s1, . . . , sn−1], which are found using the
position of each point in the world coordinate frame, pW

i :

LM =

n−1∑
i=1

‖si‖ , si = pW
i+1 − pW

i (8)

The location of these attachment points has a great influence on
both direction and magnitude of the torque a muscle can produce.
The direction of the moment arm (and thereby its function) changes
dynamically with the character pose; this relation is fully based on
the locations of the attachment points. The amount of torque a mus-
cle can provide depends on the projected distance between a mus-
cle segment and the joint it spans. If it is further away, the moment
arm is higher, but joint rotations will also lead to bigger changes
in length, which limits the range in which the muscle can operate.
Both aspects greatly affect control.

In our approach, we attempt to find efficient muscle routings
through optimization. We do so by defining an area Pi in which
a muscle point pi must be contained. In our implementation, we al-
low variation of selected Cartesian components px, py or py within
a range that is specified in an attachment template. Depending on
the number of free components, the point pi is either fixed, or con-
strained to a line, a plane or a box (see Figure 3).

Force Application The total muscle length LM is used in com-
bination with the activation state a to compute the (scalar) muscle
contraction force FM. This force is transmitted to the skeleton at
each attachment point to the body it is attached to, and generates a
torque over each joint it spans. For each joint k, a torque τk is gen-
erated in the direction defined by moment arm rk. This moment
arm corresponds to the cross-product between the direction of the
muscle segment that crosses the joint, sc, and a vector from joint
center jk to any point on segment sc (e.g. point pW

c ):

τk = FM‖rk‖ , rk = (pW
c − jk)× sc

‖sc‖
(9)

The direction and size of moment arm rk change as a function of
the character pose, based on the geometry of sc (see Figure 4).

4 Control

The goal of our muscle-based control system is to output muscle
excitation signals that produce locomotion at a desired speed. An
overview of our system is presented in Figure 5. At each step, we
first update a finite state machine based on the current leg state.
Next, we compose a set of target poses for a minimal set of featured
body parts. These poses are based on a number of basic feedback
rules for speed variation, heading control and balance. All param-
eters for constructing these poses are found through optimization.
Finally, we compute the set of excitation signals that make mus-
cle forces drive the featured body parts to their target positions and
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Figure 5: System overview. At each simulation time step, the state
of each leg is updated according to the finite state machine on the
right (§4.1). After that, target features are computed (§4.2) from
which desired muscle excitation signals are derived. The muscu-
loskeletal model output (§3) is fed back to the physics simulation
component.

orientations using a muscle-based variation of Jacobian transpose
control [Sunada et al. 1994]. We further use a small set of biolog-
ically inspired feedback rules. Time delay is incorporated in all of
our excitation signals to simulate natural delay of neural systems.

4.1 Control States

For each leg, a separate finite state machine (FSM) keeps track of
the current leg state. Similar to Wang et al. [2012], we distinguish
between four states: stance, lift-off, swing, and stance preparation
(see Figure 5). State transitions to stance and swing occur after
ground contact changes. Ground contact is measured by comparing
ground reaction force to a threshold value Fcontact. Lift-off is ini-
tiated for the rear leg at dual stance, or when the signed horizontal
distance between foot position and the center of mass, dS, crosses
a threshold value: dS < dlift. Stance preparation is initiated after
dS > dprep. Fcontact, dlift and dprep are subject to optimization.

4.2 Target Features

An important part of our control system is based on target poses,
which we define for a set of featured body parts. More specifically,
we define a target orientation for a trunk body, a target position and
orientation for a head body, and target orientations for the leg seg-
ments during swing and stance preparation (see Figure 6). The legs
in our model consist of at least three segments, named upper, lower,
and foot. All target poses are defined in a world-aligned coordinate
frame, specifically one that has axes aligned with the world ‘up’
axis and the current facing direction of the creature (defined by the
orientation of the trunk segment). The parameters to construct these
poses are found during optimization.

Trunk Target The target trunk orientation, Q̃trunk is composed of
three angles, defined in the transversal, sagittal and coronal plane
of the character (applied in that order). The transversal orientation
is based on a target heading angle ψheading, which is a user input
parameter. The sagittal orientation θtrunk is based on the difference
between the current center-of-mass velocity vCOM and desired for-
ward velocity ṽforward, which is also a user input parameter. The
adjustment of the sagittal orientation helps the character to lean for-
ward and backward to accelerate or decelerate. The coronal orien-
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tation ϕtrunk is based on the difference between current transversal
trunk orientation ψtrunk and target heading ψheading, and helps a
character lean sideways towards its target heading:

θtrunk = θ0
trunk + kv(ṽforward − vCOM) (10)

ϕtrunk = ϕ0
trunk + kh(ψheading − ψtrunk) (11)

The target angular velocity ω̃trunk is zero.

Head Target The head segment has both a target orientation and
a target position. The target orientation Q̃head is constant in the
sagittal and coronal, and rotated to matchψheading in the transversal
plane. Target position P̃head is defined as a fixed offset in the trunk
coordinate frame, and helps propagate the trunk orientation to the
segments in the chain from trunk to head. The head also has a
target linear velocity, ṽhead, in the direction of ψheading, with a
magnitude of ṽforward. The target angular velocity ω̃head is zero.

Leg Segment Targets The target upper leg orientation Q̃upper

is composed of three angles; in the transversal plane it is defined
by target heading ψheading, while the orientation in the sagittal and
coronal plane are based on fixed offsets and SIMBICON-style bal-
ance correction [Yin et al. 2007]:

θhip = θ0
hip + kθp dS + kθd(ṽforward − vS) (12)

ϕhip = ϕ0
hip + kφp dC − kφdvC (13)

in which θ0
hip and φ0

hip are offset angles, while kθp, kθd, kφp , and kφd
are control gains. The variables vS and vC are the current center-
of-mass velocity in sagittal and coronal plane, while dS and dC

are distances from the stance foot to the projected center-of-mass;
see Figure 6. Initially, a rough estimate is provided for the off-
set angles (based on the initial pose of the character) and control
parameters; their final values are found through optimization. For
the sagittal parameters, different values are used during swing and
stance preparation, leading to separate upper-leg targets for swing,
Q̃swing

upper, and stance preparation, Q̃prep
upper. The upper leg has no tar-

get angular velocity during swing, while its target angular velocity
during stance perparation, ω̃prep

upper, is zero.

The target orientation of the lower leg, Q̃lower, is defined through
a fixed angle in the sagittal plane, θknee, relative to the upper leg
orientation. The orientation of the foot segment, Q̃foot, is defined
through a fixed angle in the sagittal plane, θankle, relative to the

j2
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r1 r2
Pb b

~T
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~F

b
~FM

~F

1
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2
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Figure 7: Muscle-based feature control. A virtual force and torque
are applied to the rightmost limb. For each muscle, the correspond-
ing contraction force is computed based on the muscle moment
arm(s). The excitation is computed based on the difference between
desired and current muscle force.

ground plane. Both angles are initialized based on the model base
pose, and then optimized. Both lower leg and foot have no target
position or velocity.

4.3 Muscle-Based Feature Control

Given the set of target positions and orientations defined in the pre-
vious section, we wish to find the muscle excitation levels that cause
any relevant muscle M to drive the featured bodies towards their
respective targets. To accomplish this we use a muscle-based vari-
ation of Jacobian transpose control [Sunada et al. 1994], which at-
tempts to find a set of muscle torques that emulate the effect of a vir-
tual force or torque applied a specific body (see Figure 7). Specifi-
cally, for a body b with current state {Pb,Qb,vb, ωb} and target
state {P̃b, Q̃b, ṽb, ω̃b}, we wish to minimize the state difference
through a desired proportional-derivative (PD) feedback force F̃b

applied at Pb, and a feedback torque T̃b:

F̃b = kP

[
P̃b −Pb

]
+ kv [ṽb − vb] (14)

T̃b = kQ

[
Qb exp

(
Q̃bQ

−1
b

)]
+ kω [ω̃b − ωb] (15)

where exp(Q̃bQ
−1
b ) is the 3D exponential map that represents the

rotation from Qb to Q̃b (both of which are 3×3 rotation matrices).
We attempt to emulate the effect of F̃b and T̃b through a set of
torques in each joint k that is part of a chain from target body b,
to a root body that is assumed stable. Each muscle M that spans
over joint k produces a torque in the degree of freedom defined
by moment arm rk; see Equation (9). The magnitude of this torque
should match the effect of applying F̃b and T̃b, thereby minimizing
the difference between current and desired state for body b. To find
this desired torque, τ̃k, we regard the rate of change of Pb and Qb,
given a rotation αk about the axis of moment arm rk:

τ̃k =
∂Pb

∂αk

T

F̃b +
∂ exp (Qb)

∂αk

T

T̃b (16)

=

[
r′k
‖rk‖

× [Pb − jk]

]T
F̃b +

rk

‖rk‖
T
T̃b (17)

Based on Equation (9), we can derive the desired (scalar) muscle
force F̃M, using the magnitude of moment arm rk, and averaging
for all m joints over which M spans:

F̃M =

m∑
k=1

τ̃k
m‖rk‖

(18)

Note that the effect of a muscle force F̃M only approximates the de-
sired joint torques. The final force and torque applied to body b will
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in practice deviate from F̃b and T̃b, and depend on the geometry
and state of the individual muscles included in the chain of bodies,
as well as the stability of the root body. However, we found this
approximation to work well in practice, especially since the gains
for F̃b and T̃b are subject to optimization.

The desired activation level ãM is estimated based on the maximum
isometric force Fmax:

ãM =
F̃M

Fmax
(19)

In this estimation, we ignore the current length and velocity that
are part of Equation (1). We have found that including length and
velocity relations into our approximate inverse model for the con-
traction dynamics causes oscillations in muscle activation, because
length and velocity change significantly over the course of neural
and activation delay.

4.4 Muscle Activations

To compute the muscle excitation levels for our control system, we
use a combination of muscle-based feature control, positive force-
feedback [Geyer et al. 2006], and constant excitation values. We
omit the use of length-based feedback rules defined in Geyer and
Herr [2010] and Wang et al. [2012] in favor of our muscle-based
feature control. A time delay is added to all feedback paths to sim-
ulate neural delay. For each muscle M involved in muscle-based
feature control, we set the output excitation to match the desired
activation:

ũM = ãM
t−∆t (20)

in which t−∆t represents the application of a delay ∆t. Following
Geyer and Herr [2010], we use ∆t = 20ms for muscles attached
to the foot, ∆t = 10ms for muscles attached to lower leg, and
∆t = 5ms for muscles attached to upper leg. For other muscles, we
use ∆t = 5ms. Alternatively, the amount of delay could directly
be derived from the distance of the muscle to the brain.

Trunk Orientation Feedback During stance, the orientation of
the trunk is stabilized and rotated towards its target orientation
Q̃trunk by all muscles connecting the trunk segment to a stance
leg segment. The excitation for each HIP muscle corresponds to:

ustance
HIP = ãHIP(Q̃trunk, ω̃trunk)

t−∆t
(21)

Note that this feedback performs a rotation in 3 dimensions, de-
pending on the planes in which the muscles operate.

Head Position and Orientation Feedback The head is moved
towards its target state by all muscles connected to any body in the
chain from trunk to head. The excitation is defined as:

uS = ãS(Q̃head, ω̃head, P̃head, ṽhead)
t−∆t

(22)

Stance and Lift-Off Feedback For the stance leg, we do not de-
fine target orientations or positions. Instead, we rely on positive
force feedback to achieve natural joint compliance [Geyer et al.
2006]:

uF+ = kF+
M FM

t−∆t
(23)

in which kF+
M is a constant feedback gain found during optimiza-

tion. The length-force and velocity-force relations of any muscle
ensure the excitation level does not increase indefinitely. Positive

Subject Parameters Section
Muscle physiology 3–30 * 3.1
Muscle geometry 12–39 * 3.3
State transition 3 4.1
Target features 14 4.2
Feedback control 14–63 * 4.3, 4.4
Initial character state 6 †

Table 1: Parameters subject to optimization. The number of pa-
rameters marked * is model dependent (see Table 3). † The param-
eters for initial character state are: initial forward lean, and initial
speeds for upper swing leg, lower swing leg (and foot), upper stance
leg, lower stance leg (and foot), and other bodies.

force feedback is applied to any muscle that extends the knee or
ankle joint during stance and lift-off.

During lift-off, all muscles attached to the hip are fed a constant
excitation of high magnitude, to initiate a leg swing. The sign of
this constant depends on whether the muscle is anterior (in front),
or posterior (in the back). In addition, any knee extensor muscle is
fed a constant negative excitation to initiate knee swing velocity:

ulift
HIP = clift

HIP (24)

ulift
KNEE = clift

KNEE (25)

Swing and Stance Preparation Feedback The upper leg is
guided towards its target orientation during swing and stance prepa-
ration. The upper-leg target orientation and control use separate pa-
rameters for swing and stance preparation. The lower leg is guided
towards its target only during stance preparation, while the knee
remains passive during swing. The ankle muscles guide the foot
towards its target orientation during both swing and stance prepara-
tion. The full set of feedback rules is as follows:

uswing
HIP = ãHIP(Q̃swing

upper)
t−∆t

(26)

uprep
HIP = ãHIP(Q̃prep

upper, ω̃
prep
upper)

t−∆t
(27)

uprep
KNEE = ãKNEE(Q̃lower)

t−∆t
(28)

uswing
ANK = uprep

ANK = ãANK(Q̃foot)
t−∆t

(29)

Constant Excitation In addition to the feedback rules stated
above, all muscles have a constant excitation, which is defined sep-
arately for {stance, lift-off} and {swing, stance preparation}:

ustance,lift
M = cstance,lift

M (30)

uswing,prep
M = cswing,prep

M (31)

5 Optimization

Both our muscle model (Section 3) and control model (Section 4)
introduce a large number of free parameters, which are determined
through off-line optimization (see Table 1 for an overview). The
total set of parameters, K, is optimized using Covariance Matrix
Adaptation [Hansen 2006], with step size σ = 1 and population
size λ = 20.

Objective The goal of our optimization process is to minimize
the error Ē(K), which consists of the following components:

Ē(K) = Ēspeed + Ēheadori + Ēheadvel + Ēslide + Ēeffort (32)
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Evel
speed Eori

head Evel
head Eslide Eeffort

Weight (Wm) 100 10 10 10 0.1
Treshold (Hm) 0.1 0.2 0.3 0.2 0

Table 2: Weights and thresholds for the individual error measures.

Each right hand term is acquired by integrating a time dependent
measure Em(t) over a specific duration tmax:

Ēm = Wm

{∫ tmax

0

Em(t) ∂t

}
Hm

(33)

in which Wm is measure-specific weight, while {}Hm enforces a
measure-specific threshold: the value between braces is set to zero
if it is lower than Hm. This allows for a prioritized optimization, as
heavily weighted terms have greater influence until they reach their
threshold. A significant difference with the error measure of Wang
et al. [2012] is that we apply this threshold after integration, allow-
ing incidental high values to be compensated by below-threshold
averages. This is especially relevant for the initial stage of the sim-
ulation, when a character is still finding its pace. The individual
weights and thresholds for each of the error terms are shown in Ta-
ble 2.

The measure for target speed, Espeed(t), is computed as the
normalized difference between base speed and target velocity
ṽforward(t):

Espeed(t) = ‖1− vbase(t)

ṽforward(t)
‖ (34)

in which vbase(t) is the forward speed based on the average foot
position, updated at each contact initiation. To increase head sta-
bility, we use an error measure Eheadori(t) for deviation of head
orientation from its target, and Eheadvel(t) for deviation for linear
head velocity from its target:

Eheadori(t) = ‖Q−1
head(t)Q̃head(t)‖ (35)

Eheadvel(t) = ‖ṽhead − vhead(t)‖ (36)

In some of our simulations, we experienced a local minimum as
the result of foot sliding. Error measure Eslide(t) prevents this by
penalizing through average contact velocity vcontact(t):

Eslide(t) = vcontact(t) (37)

For effort minimization Eeffort(t), we use the current rate of
metabolic expenditure [Wang et al. 2012].

Termination Conditions During the evaluation ofE(K), we ter-
minate a simulation prematurely when failure is detected to save on
simulation time and to help prevent local minima in the optimiza-
tion. The following tests are performed during each time step:

• Center-of-Mass Height. To detect falling, we measure the
center-of-mass position and compare its height to the initial
state. The simulation is terminated if the measured height falls
below a certain threshold. We use a factor of 0.9.

• Heading. We compare the target heading ψheading to the cur-
rent trunk heading ψtrunk, and terminate if they deviate over
45 degrees. In addition to keeping the character from drifting,
this helps avoid a local minimum scenario where a character
thrusts its feet forward during a backwards turn.

• Self-Collision and Leg-Crossing. We terminate on both self-
collision and leg crossing, to avoid local minima where a char-
acter is unable to take another step because of self-collision.

 Property Human 
Legs 

Human 
Body 

Inverted 
Legs 

Neck-Tail 
Body 

E
le

m
en

ts
 Bodies 9 8 9 N + T + 2 

Joint DOFs 10 17 10 3N + 3T + 4 
Total muscles 20 20 20 4N + 4T + 4 
Unique muscles 10 6 10 4 

Pa
ra

m
et

er
s Muscle Property 30 6 30 3 

Muscle Topology 37 26 39 12 
Active Control 60 20 60 14 
Passive Control 3 1 3 0 
Total 130 53 132 29 

 

Table 3: Overview of structure and parameters of our model tem-
plates.

Leg-crossing occurs when the coronal left and right foot posi-
tions are reversed.

After termination, we set Espeed(t) = 1 for the remaining dura-
tion, resulting in a large penalty for failure. For the other measures
we use Em(t) = 0 for the remaining duration, to ensure their ef-
fect is minimal during the early stage of development, in which a
controller is only able to take a few steps.

6 Experiments

We test our framework using Open Dynamics Engine (ODE) [Smith
2006], version 0.8.2, using an integration time step of 0.0003s. We
use the same ground contact model as Wang et al. [2009], simu-
lating a spring-damper system with kp = 75000 and kd = 2000
through use of ODE’s CFM and ERP parameters (see [Smith 2006]
for details), and using a friction coefficient of µ = 10.

We initialize the activation level of all muscles to 0.02, and force
the left leg into swing state by rotating the upper leg 20 degrees
forward. Depending on the type of experiment, we evaluate for
a tmax of either 10s or 20s. The total optimization time depends
on the character model and the type of experiment; the number of
evaluated generations varies between 500 and 3000. On a standard
PC, optimization time takes between 2 and 12 hours. For some ex-
periments, we use the results of earlier optimizations to speed up
optimization. Aside from those cases, all parameters were initial-
ized using a single set of values for all models and target speeds.
Once optimized, a controller can drive the simulated motion in real
time.

6.1 Creature Models

We have tested our method with four different model templates,
which can be combined and parameterized to obtain a variety of
biped characters as shown in Figure 1 and the supplementary video
material. The free areas for muscle attachments, as well as the body
hierarchy of each of these models is illustrated in Figure 8. The el-
ements and free parameters for each of our models are summarized
in Table 3.

Humanoid Lower-Body Model The muscles in our humanoid
lower-body model (Figure 8(c)) largely uses the same muscles as
the sagittal-plane lower-body model of Wang et al. [2012], with the
exception of the hip muscles. We use two out-of-plane hip flexors
and two hip abductors, each of which operates simultaneously in
the sagittal and coronal plane. The model has a total of 10 unique
muscles for each leg; for each we optimize Fmax, Lopt

CE and Lslack
SEE .

The hip and ankle joint have 3 DOFs, while the knee has 1 DOF.
We include passive spring-dampers for axial hip, axial ankle and
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(b) Neck-Tail upper-body model: side, top and bottom. The tilt
angles and number of neck / tail segments can be adjusted.
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(c) Humanoid lower-body model: front, side and back.
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(d) Inverted lower-body model: front, side and back.

Figure 8: Schematic overview of the permitted areas for the attachment points of each individual muscle. During optimization, each attach-
ment point (the red dots) is allowed to move along the dotted line or area in which it is defined.

planar ankle rotation; the gains are subject to optimization. Follow-
ing Wang et al. [2012], we attach a toe segment to the foot using a
joint with a spring constant of 30 Nm / rad.

Humanoid Upper-Body Model The humanoid upper-body
model (Figure 8(a)) contains 2 upper-body segments (in addition
to the shared root segment), a head segment and two arm segments.
The elbow joint has 1 DOF, while the shoulder, spine and neck
joints have 3 DOFs. There is a total of 12 spine muscles (6 on
each side) that control head position and orientation, but properties
are shared for all anterior (SA) and all posterior (SP) spine mus-
cles. The arms are controlled using 4 unique muscles per arm that
roughly represent various muscle groups present in the human body.
These muscles are controlled through state-dependent constant ex-
citation only; the arm states are linked to the corresponding legs. In
the upper body muscles, we optimize Lopt

CE and derive Lslack
SEE from

that, because allowing rest-length optimization for spine muscles
often results in stiff short muscles during optimization. We add pas-
sive spring-damper control (with optimized gains) for spine joints
in the axial direction.

Inverted Lower-Body Model The inverted lower-body model
(Figure 8(d)) is similar to the humanoid lower-body, with the ‘in-
verted knee’ corresponding to the humanoid ankle. The template
for muscle attachment has been modified to support long tilted feet
and short upper legs, with hip joints located within the trunk body.
Despite the differences in function, the initial values of the control

parameters are the same as the humanoid lower-body leg model.

Neck-Tail Upper-Body Model The neck-tail upper-body model
(Figure 8(b)) supports upper bodies with a variable number of neck
(N) and tail (T) segments, as well as user-defined tilt angles. Each
segment is attached to its parent with a 3 DOF joint and 4 muscles.
There are 4 unique muscle types: neck anterior (NA), neck posterior
(NP), tail anterior (TA), and tail posterior (TP); all muscles of the
same type share the same control parameters and muscle properties.
The neck muscles control the target head position and orientation
through muscle-based feature control; see Equation (22). Note that
while there are individual muscles to control the motion of each
neck joint, their actions are implicitly coordinated via the feature-
based control strategy. The tail muscles are controlled only through
constant excitation, depending on the leg state of the corresponding
side. All neck and tail joints contain a low-force critically damped
spring, with a spring constant of 5 Nm / rad for all DOFs.

6.2 Controller Capabilities

The previously described lower and upper body models can be com-
bined by sharing the root body. Further variation can be accom-
plished by changing character dimensions and (for the neck-tail
model) number of segments and tilt angles. We have tested a num-
ber of capabilities of our controller, for the following combinations:

• Human. Humanoid lower-body model with average leg
lengths (upper = 0.4, lower = 0.4, foot = 0.21), and average-
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Model Speed Gen Slope Push Turning
Human 2.0m/s 197 ±5 deg 100N 12 deg /s
Human 4.0m/s 760 ±3 deg 50N 12 deg /s
Ostrich 1.2m/s 698 ±5 deg 50N 6 deg /s
LongNeck 1.5m/s 541 ±5 deg 100N 12 deg /s
LongLegs 2.0m/s 403 ±3 deg 100N 12 deg /s

Table 4: Results for maximum slope, pushing force and turning
speed for a selection of character models. Gen represents the num-
ber of generations before a straight walking controller reaches all
of its objective function thresholds.

sized humanoid upper-body model.

• Ostrich. Inverted lower-body model (upper = 0.2, lower =
foot = 0.45), and neck-tail upper-body model with 5 neck and
5 tail segments.

• LongNeck. Humanoid lower-body model with relatively short
legs (upper = lower = 0.3m, foot = 0.21) and a torso of 0.5m,
and neck-tail upper-body model with 8 neck segments and no
tail.

• LongLegs. Humanoid lower-body model with long legs (up-
per = lower = 0.6m), same upper-body model as Ostrich.

Tests include locomotion at multiple speeds, steering towards tar-
get headings, robustness over uneven terrain, and robustness in the
face of external perturbations. The supplementary video material
displays many of these capabilities. For robustness and steering
tests, we initialize controllers with results from straight walking op-
timizations, and declare success when a stable controller is found
within 300 generations (using tmax = 20).

Figure 9: Example synthesized walking and hopping gaits.

Speed variation Similar to Wang et al. [2012], we automati-
cally acquire different gaits by only varying the optimization target
speed. In addition to seeing running gaits at higher speeds for hu-
manoid models, we witness a hopping style gait emerging for some
creatures with inverted lower-body models, only by increasing the
target velocity.

For a selection of models, Table 4 shows the number of genera-
tions during optimization before all error measures in the objective
function reach their thresholds.

Steering In this experiment we show the ability of our con-
trollers to make interactive turns through variation of target heading
ψheading. We do so by training controllers to follow a path with
random turns, with a fixed turning velocity. The maximum turning
velocities for a selection of creature models are shown in Table 4.

Uneven Terrain We examine the ability of our controllers to cope
with uneven terrains by placing the creature models on a 1m wide
ramp, with a steepness that randomly varies each meter. Table 4
shows a selection of maximum steepness ranges.

External Perturbations We examine the capability of our con-
trollers to withstand external perturbations by applying pushes in
random directions with a duration of 0.2s to the trunk body (or up-
per torso in case of humanoid upper-body models). Results are dis-
played in Table 4. Compared to Wang et al. [2012], our controllers
are somewhat less robust, but demonstrate more natural responses
during lateral perturbations. This observation is in correspondence
with the fact that their framework uses PD control without neural
delay for coronal and upper-body balance, while our framework
uses muscles with neural delay for all feedback paths.

6.3 Comparisons

We also examine the effect of specific components of our frame-
work by comparing it to versions in which these components are
disabled.

Disabling Biomechanical Constraints We examine the effect
of the dynamic muscle model and neural delay present in our frame-
work. More specifically, we remove the delay for our feedback sig-
nals, and omit activation and contraction dynamics by setting the
output muscle force to FM = uFmax. For effort optimization, we
use Eeffort(t) =

∑
FM.

Together with our Jacobian transpose based control method, the
altered controller becomes similar to a joint torque PD controller,
with the exception that constant forces still have variable moment
arms. The results in the supplementary video material clearly
demonstrate increased stiffness and high-gain torque patterns in an-
imations where biomechanical constraints are removed.

Disabling Muscle Routing Optimization We examine the effect
of the optimization of muscle routing by fixing each muscle point to
the center of its allowed area and removing the routing parameters
from the optimization. With this restriction, optimized controllers
either fail to produce robust gaits, or demonstrate clear unnatural
artifacts in gait.

This effect is most apparent with some of the wider creatures (as
can be seen in the supplementary video material), where the effec-
tive placement of the optimized lateral gluteus muscles allows the
character to smoothly pivot around its stance leg, thus achieving a
more natural gait. In another example, which shows a humanoid
with wide hips and a thin upper-body, the optimized placement of
the lower abdominal muscles aids in achieving upper-body stability.

7 Conclusions

We have introduced a flexible framework for muscle-based locomo-
tion of bipedal creatures. The method has the versatility to support
various creatures, a range of speeds, turning behavior, and robust-
ness to external perturbations and unanticipated variations in terrain
slope. Key elements include the optimization of muscle routing and
the use of muscle-based approximations to Jacobian transpose con-
trol. Together, these allow for flexible and robust fully-3D muscle-
driven locomotion for a variety of bipedal creatures.

The current method still has limitations. Compared to the results
of Wang et al. [2012], our human walking and running motions
are of somewhat lesser fidelity, especially for the upper-body. This
can be partially explained by the absence of target arm features in
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our humanoid models. We have left out such targets in favor of a
generic approach, but researchers focusing on a more faithful hu-
man gait can easily reintroduce these (and other) domain-specific
elements. Another important constituent is the fact that Wang et
al. [2012] use PD-driven torques without delay for all coronal and
upper-body motion, which gives their controller exceptional lateral
balance and upper-body stability. This allows their character to
move more solidly in a straight line (especially during running mo-
tions), but makes it respond less naturally to perturbations. Apart
from these aspects, our lower-body walking motions are very close
to their state-of-the-art result. We witness a similar near-passive
knee usage during swing, as well as a natural build-up of the ankle
plantarflexion moment during stance. This is remarkable given the
fact that we left out several of the domain-specific feedback rules
introduced by Geyer and Herr [2010].

A fundamental question shared by much of the work in this area
is that of what to do when an optimization does not produce the
desired results. It can be difficult to know whether to attribute the
outcome to implementation errors, the optimization method find-
ing a local minimum, the weighting of objective function terms,
the given muscle routing templates, the creature morphology, or
limitations of the control architecture. In practice, we have found
the modular, parameterized structure of our creatures to be help-
ful in gaining a deeper understanding of how these various factors
help shape the resulting motion patterns. The development of an
improved set of authoring tools remains an important direction for
future work.

Muscle-based control provides a lower-level model for generating
creature motion than previous torque-based control methods, and
much lower-level (more detailed) than that of kinematic models of
motion. This has the potential to create significantly better mod-
els of motion, because the constraints imparted by muscle-based
control now become implicit in the resulting motions. However,
commensurate with this is the disadvantage of having a larger set
of parameters that need to be modeled or identified from data, i.e.,
muscle geometry, muscle maximum forces, and other such parame-
ters. Our results show that optimization can be used as one method
to help set these extra parameters, at least for the constrained set
of models and motions we have presented here. Within the scope
of our framework, we demonstrate that there is a benefit to the
muscle model and the muscle geometry optimization. We note,
however, that this indicates that muscle models are sufficient, al-
though they still may not always be necessary if high quality re-
sults can be achieved using other means (i.e., simpler kinematic or
dynamic modeling methods). While Wang et al. [2012] test and
document the importance of using muscle models as compared to
torque-based models, a more exact characterization of the benefits
and limitations of each of these classes of models remains an im-
portant subject for future work.

Details of our simulation which could be further improved include:
greater fidelity for the modeling joints such as the knees, ankles,
and shoulders; more accurate muscle path wrapping models that
interact with the skeleton geometry; giving further thought to the
detail with which the target feature trajectories need to be modeled;
the addition of anticipatory feed-forward control to the architec-
ture; and the use of alternate dynamics simulators such as OpenSim,
which have been thoroughly tested in the context of other biome-
chanics research efforts. It would be interesting to investigate the
extent to which the muscle geometry optimization can be used to
predict the insertion and attachment points of human musculature.
An analysis of the motion with respect to the actions of antagonis-
tic muscle pairs would also be helpful in terms of understanding the
solution space. Lastly, there is a need to investigate a wider reper-
toire of motions, including speed transitions and more aggressive
balance recovery behaviors.
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