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15.1 Viscoelasticity

The material response discussed in the previous chapters

was limited to the response of elastic materials, in particular

to linearly elastic materials. Most metals, for example,
exhibit linearly elastic behavior when they are subjected to

relatively low stresses at room temperature. They undergo

plastic deformations at high stress levels. For an elastic
material, the relationship between stress and strain can be

expressed in the following general form:

s ¼ sðeÞ: (15.1)

Equation (15.1) states that the normal stress s is a func-

tion of normal strain e only. The relationship between the

shear stress t and shear strain g can be expressed in a similar
manner. For a linearly elastic material, stress is linearly

proportional to strain, and in the case of normal stress and

strain, the constant of proportionality is the elastic modulus
E of the material (Fig. 15.1):

s ¼ Ee: (15.2)

While investigating the response of an elastic material, the

concept of time does not enter into the discussions. Elastic

materials show time-independent material behavior. Elastic
materials deform instantaneously when they are subjected to

externally applied loads. They resume their original

(unstressed) shapes almost instantly when the applied loads
are removed.

There is a different group of materials—such as polymer

plastics, almost all biological materials, and metals at high
temperatures—that exhibits gradual deformation and recov-

ery when they are subjected to loading and unloading.

The response of such materials is dependent upon how
quickly the load is applied or removed, the extent of defor-

mation being dependent upon the rate at which the deforma-

tion-causing loads are applied. This time-dependent material
behavior is called viscoelasticity. Viscoelasticity is made up

of two words: viscosity and elasticity. Viscosity is a fluid

property and is a measure of resistance to flow. Elasticity,
on the other hand, is a solid material property. Therefore,

a viscoelastic material is one that possesses both fluid and

solid properties.
For viscoelastic materials, the relationship between stress

and strain can be expressed as:

s ¼ sðe; _eÞ: (15.3)

Equation (15.3) states that stress, s, is not only a function
of strain, e, but is also a function of the strain rate, _e ¼ de=dt,
where t is time. A more general form of Eq. (15.3) can be
obtained by including higher order time derivatives of strain.

Equation (15.3) indicates that the stress–strain diagram of a
viscoelastic material is not unique but is dependent upon the

rate at which the strain is developed in the material

(Fig. 15.2).Fig. 15.1 Linearly elastic material behavior
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15.2 Analogies Based on Springs
and Dashpots

In Sect. 13.8, while covering Hooke’s Law, an analogy was

made between linearly elastic materials and linear springs.
An elastic material deforms, stores potential energy, and

recovers deformations in a manner similar to that of a spring.

The elastic modulus E for a linearly elastic material relates
stresses and strains, whereas the constant k for a linear spring
relates applied forces and corresponding deformations

(Fig. 15.3). Both E and k are measures of stiffness. The
similarities between elastic materials and springs suggest

that springs can be used to represent elastic material behav-

ior. Since these similarities were first noted by Robert
Hooke, elastic materials are also known as Hookean solids.

When subjected to external loads, fluids deform as well.

Fluids deform continuously, or flow. For fluids, stresses are
not dependent upon the strains but on the strain rates. If the

stresses and strain rates in a fluid are linearly proportional,

then the fluid is called a linearly viscous fluid or a Newtonian
fluid. Examples of linearly viscous fluids include water and

blood plasma. For a linearly viscous fluid,

s ¼ !ð_eÞ: (15.4)

In Eq. (15.4), ! (eta) is the constant of proportionality
between the stress s and the strain rate _e, and is called the

coefficient of viscosity of the fluid. As illustrated in Fig. 15.4,
the coefficient of viscosity is the slope of the s$ _e graph of a
Newtonian fluid. The physical significance of this coefficient

is similar to that of the coefficient of friction between the
contact surfaces of solid bodies. The higher the coefficient

of viscosity, the “thicker” the fluid and the more difficult it is

to deform. The coefficient of viscosity for water is about
1 centipoise at room temperature, while it is about 1.2

centipoise for blood plasma.

The spring is one of the two basic mechanical elements

used to simulate the mechanical behavior of materials. The

second basic mechanical element is called the dashpot,
which is used to simulate fluid behavior. As illustrated in

Fig. 15.5, a dashpot is a simple piston–cylinder or a syringe

type of arrangement. A force applied on the piston will
advance the piston in the direction of the applied force.

The speed of the piston is dependent upon the magnitude

of the applied force and the friction occurring between the
contact surfaces of the piston and cylinder. For a linear

dashpot, the applied force and speed (rate of displacement)

are linearly proportional, the coefficient of friction m (mu)
being the constant of proportionality. If the applied force and

the displacement are both in the x direction, then,

F ¼ m _x: (15.5)

Fig. 15.3 Analogy between a linear spring and an elastic solid

Fig. 15.4 Stress–strain rate diagram for a linearly viscous fluid

Fig. 15.2 Strain rate (_e) dependent viscoelastic behavior

Fig. 15.5 A linear dashpot and its force–displacement rate diagram
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In Eq. (15.5), _x ¼ dx=dt is the time rate of change of
displacement or the speed.

By comparing Eqs. (15.4) and (15.5), an analogy can be
made between linearly viscous fluids and linear dashpots.

The stress and the strain rate for a linearly viscous fluid are,

respectively, analogous to the force and the displacement
rate for a dashpot; and the coefficient of viscosity is analo-

gous to the coefficient of viscous friction for a dashpot.

These analogies suggest that dashpots can be used to repre-
sent fluid behavior.

15.3 Empirical Models of Viscoelasticity

Springs and dashpots constitute the building blocks of model

analyses in viscoelasticity. Springs and dashpots connected

to one another in various forms are used to construct empiri-
cal viscoelastic models. Springs are used to account for the

elastic solid behavior and dashpots are used to describe the

viscous fluid behavior (Fig. 15.6). It is assumed that a con-
stantly applied force (stress) produces a constant deformation

(strain) in a spring and a constant rate of deformation (strain

rate) in a dashpot. The deformation in a spring is completely
recoverable upon release of applied forces, whereas the

deformation that the dashpot undergoes is permanent.

15.3.1 Kelvin–Voight Model

The simplest forms of empirical models are obtained by
connecting a spring and a dashpot together in parallel and

in series configurations. As illustrated in Fig. 15.7, the

Kelvin–Voight model is a system consisting of a spring and
a dashpot connected in a parallel arrangement. If subscripts

“s” and “d” denote the spring and dashpot, respectively, then

a stress s applied to the entire system will produce stresses
ss and sd in the spring and the dashpot. The total stress

applied to the system will be shared by the spring and the
dashpot such that:

s ¼ ss þ sd: (15.6)

As the stress s is applied, the spring and dashpot will
deform by an equal amount because of their parallel arrange-

ment. Therefore, the strain e of the system will be equal to

the strains es and ed occurring in the spring and the dashpot:

e ¼ es ¼ ed: (15.7)

The stress–strain relationship for the spring and the

stress–strain rate relationship for the dashpot are:

ss ¼ Ees; (15.8)

sd ¼ !_ed: (15.9)

Substituting Eqs. (15.8) and (15.9) into Eq. (15.6) will

yield:

s ¼ Ees þ !_ed: (15.10)

From (15.7), es ¼ ed ¼ e. Therefore,

s ¼ Eeþ !_e: (15.11)

Note that the strain rate _e can alternatively be written as

de=dt. Consequently,

s ¼ Eeþ !
de
dt

: (15.12)

Equation (15.12) relates stress to strain and the strain rate

for the Kelvin–Voight model, which is a two-parameter

(E and !) viscoelastic model. Equation (15.12) is an ordi-
nary differential equation. More specifically, it is a first

order, linear ordinary differential equation. For a given stress

s, Eq. (15.12) can be solved for the corresponding strain e.
For prescribed strain e, it can be solved for stress s.

Note that the review of how to handle ordinary differen-

tial equations is beyond the scope of this text. The interested

Fig. 15.6 Spring represents elastic and dashpot represents viscous
material behaviors

Fig. 15.7 Kelvin–Voight model
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reader is encouraged to review textbooks in “differential
equations.”

15.3.2 Maxwell Model

As shown in Fig. 15.8, the Maxwell model is constructed by

connecting a spring and a dashpot in a series. In this case, a
stress s applied to the entire system is applied equally on the

spring and the dashpot (s ¼ ss ¼ sd), and the resulting

strain e is the sum of the strains in the spring and the dashpot
(e ¼ es þ ed). Through stress–strain analyses similar to those

carried out for the Kelvin–Voight model, a differential equa-

tion relating stresses and strains for the Maxwell model can
be derived in the following form:

! _sþ Es ¼ E!_e: (15.13)

This is also a first order, linear ordinary differential equa-

tion representing a two-parameter (E and !) viscoelastic

behavior. For a given stress (or strain), Eq. (15.13) can be
solved for the corresponding strain (or stress).

Notice that springs are used to represent the elastic solid

behavior, and there is a limit to how much a spring can
deform. On the other hand, dashpots are used to represent

fluid behavior and are assumed to deform continuously

(flow) as long as there is a force to deform them. For
example, in the case of a Maxwell model, a force applied

will cause both the spring and the dashpot to deform. The

deformation of the spring will be finite. The dashpot will
keep deforming as long as the force is maintained. There-

fore, the overall behavior of the Maxwell model is more like

a fluid than a solid, and is known to be a viscoelastic fluid
model. The deformation of a dashpot connected in parallel to

a spring, as in the Kelvin–Voight model, is restricted by the

response of the spring to the applied loads. The dashpot in
the Kelvin–Voight model cannot undergo continuous

deformations. Therefore, the Kelvin–Voight model

represents a viscoelastic solid behavior.

15.3.3 Standard Solid Model

The Kelvin–Voight solid and Maxwell fluid are the basic
viscoelastic models constructed by connecting a spring and a

dashpot together. They do not represent any known real

material. However, in addition to springs and dashpots,

they can be used to construct more complex viscoelastic
models, such as the standard solid model. As illustrated in

Fig. 15.9, the standard solid model is composed of a spring
and a Kelvin–Voight solid connected in a series. The stan-

dard solid model is a three-parameter (E1;E2, and !) model

and is used to describe the viscoelastic behavior of a number
of biological materials such as the cartilage and the white

blood cell membrane. The material function relating the

stress, strain, and their rates for this model is:

ðE1 þ E2Þsþ ! _s ¼ ðE1E2eþ E1!_eÞ: (15.14)

In Eq. (15.14), _s ¼ ds=dt is the stress rate and _e ¼ de=dt
is the strain rate. This equation can be derived as follows.

As illustrated in Fig. 15.10, the model can be represented by

two units, A and B, connected in a series such that unit A is
an elastic solid and unit B is a Kelvin–Voight solid. If sA and

eA represent stress and strain in unit A, and sB and eB are
stress and strain in unit B, then,

sA ¼ E1eA; (i)

sB ¼ E2eB þ !
deB
dt

¼ E2 þ !
d

dt

! "
eB: (ii)

Since units A and B are connected in a series:

eA þ eB ¼ e; (iii)

sA ¼ sB ¼ s: (iv)

Substitute Eq. (iv) into Eqs. (i) and (ii) and express them

in terms of strains eA and eB:

eA ¼ s
E1

; (v)

Fig. 15.8 Maxwell model

Fig. 15.9 Standard solid model

Fig. 15.10 Standard solid model is represented by units A and B
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eB ¼ s
E2 þ !ðd=dtÞ

: (vi)

Substitute Eqs. (v) and (vi) into Eq. (iii):

s
E1

þ s
E2 þ !ðd=dTÞ

¼ e:

Employ cross multiplication and rearrange the order of
terms to obtain

ðE1 þ E2Þsþ !
ds
dt

¼ E1E2eþ E1!
de
dt

15.4 Time-Dependent Material Response

An empirical model for a given viscoelastic material can be

established through a series of experiments. There are sev-
eral experimental techniques designed to analyze the time-

dependent aspects of material behavior. As illustrated in

Fig. 15.11a, a creep and recovery (recoil) test is conducted
by applying a load (stress so) on the material at time t0,
maintaining the load at a constant level until time t1, sud-
denly removing the load at t1, and observing the material
response. As illustrated in Fig. 15.11b, the stress relaxation
experiment is done by straining the material to a level eo and
maintaining the constant strain while observing the stress
response of the material. In an oscillatory response test, a

harmonic stress is applied and the strain response of the

material is measured (Fig. 15.11c).

Consider a viscoelastic material. Assume that the mate-
rial is subjected to a creep test. The results of the creep test

can be represented by plotting the measured strain as a
function of time. An empirical viscoelastic model for the

material behavior can be established through a series of

trials. For this purpose, an empirical model is constructed
by connecting a number of springs and dashpots together. A

differential equation relating stress, strain, and their rates is

derived through the procedure outlined in Sect. 15.3 for the
Kelvin–Voight model. The imposed condition in a creep test

is s ¼ so. This condition of constant stress is substituted into
the differential equation, which is then solved (integrated)
for strain e. The result obtained is another equation relating

strain to stress constant so, the elastic moduli and

coefficients of viscosity of the empirical model, and time.
For a given so and assigned elastic and viscous moduli, this

equation is reduced to a function relating strain to time. This

function is then used to plot a strain versus time graph and is
compared to the experimentally obtained graph. If the gen-

eral characteristics of the two (experimental and analytical)

curves match, the analyses are furthered to establish the
elastic and viscous moduli (material constants) of the mate-

rial. This is achieved by varying the values of the elastic and

viscous moduli in the empirical model until the analytical
curve matches the experimental curve as closely as possible.

In general, this procedure is called curve fitting. If there is no
general match between the two curves, the model is aban-
doned and a new model is constructed and checked.

The result of these mathematical model analyses is an

empirical model and a differential equation relating stresses
and strains. The stress–strain relationship for the material

can be used in conjunction with the fundamental laws of

mechanics to analyze the response of the material to differ-
ent loading conditions.

Note that the deformation processes occurring in visco-

elastic materials are quite complex, and it is sometimes
necessary to use an array of empirical models to describe

the response of a viscoelastic material to different loading

conditions. For example, the shear response of a viscoelastic
material may be explained with one model and a different

model may be needed to explain its response to normal

loading. Different models may also be needed to describe
the response of a viscoelastic material at low and high

strain rates.

15.5 Comparison of Elasticity
and Viscoelasticity

There are various criteria with which the elastic and visco-

elastic behavior of materials can be compared. Some of these
criteria are discussed in this section.

An elastic material has a unique stress–strain relationship

that is independent of the time or strain rate. For elastic
Fig. 15.11 (a) Creep and recovery, (b) stress relaxation, and (c)
oscillatory response tests
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materials, normal and shear stresses can be expressed as
functions of normal and shear strains:

s ¼ sðeÞ and t ¼ tðgÞ:

For example, the stress–strain relationships for a linearly
elastic solid are s ¼ Ee and t ¼ Gg, where E and G are

constant elastic moduli of the material. As illustrated in

Fig. 15.12, a linearly elastic material has a unique normal
stress–strain diagram and a unique shear stress–strain diagram.

Viscoelastic materials exhibit time-dependent material

behavior. The response of a viscoelastic material to an

applied stress not only depends upon the magnitude of the
stress but also on how fast the stress is applied to or removed

from the material. Therefore, the stress–strain relationship

for a viscoelastic material is not unique but is a function of
the time or the rate at which the stresses and strains are

developed in the material:

s ¼ sðe; _e; . . . ; tÞ and t ¼ tðg; _g; . . . ; tÞ:

Consequently, as illustrated in Fig. 15.13, a viscoelastic

material does not have a unique stress–strain diagram.

For an elastic body, the energy supplied to deform the

body (strain energy) is stored in the body as potential energy.
This energy is available to return the body to its original

(unstressed) size and shape once the applied stress is

removed. As illustrated in Fig. 15.14, the loading and
unloading paths for an elastic material coincide. This

indicates that there is no loss of energy during loading and

unloading.

For a viscoelastic body, some of the strain energy is
stored in the body as potential energy and some of it is

dissipated as heat. For example, consider the Maxwell

model. The energy provided to stretch the spring is stored
in the spring while the energy supplied to deform the dashpot

is dissipated as heat due to the friction between the moving

parts of the dashpot. Once the applied load is removed, the
potential energy stored in the spring is available to recover

the deformation of the spring, but there is no energy avail-

able in the dashpot to regain its original configuration.
Consider the three-parameter standard solid model shown

in Fig. 15.9. A typical loading and unloading diagram for this

model is shown in Fig. 15.15. The area enclosed by the
loading and unloading paths is called the hysteresis loop,
which represents the energy dissipated as heat during the

deformation and recovery phases. This area, and conse-
quently the amount of energy dissipated as heat, is dependent

upon the rate of strain employed to deform the body. The

presence of the hysteresis loop in the stress–strain diagram
for a viscoelastic material indicates that continuous loading

and unloading would result in an increase in the temperature

of the material.

Note here that most of the elastic materials exhibit plastic
behavior at stress levels beyond the yield point. For

elastic–plastic materials, some of the strain energy is

dissipated as heat during plastic deformations. This is
indicated with the presence of a hysteresis loop in their

loading and unloading diagrams (Fig. 15.16). For such

Fig. 15.12 An elastic material has unique normal and shear
stress–strain diagrams

Fig. 15.13 Stress–strain diagram for a viscoelastic material may not
be unique

Fig. 15.14 For an elastic material, loading and unloading paths
coincide

Fig. 15.15 Hysteresis loop
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materials, energy is dissipated as heat only if the plastic

region is entered. Viscoelastic materials dissipate energy

regardless of whether the strains or stresses are small or large.
Since viscoelastic materials exhibit time-dependent mate-

rial behavior, the differences between elastic and viscoelas-

tic material responses are most evident under time-
dependent loading conditions, such as during the creep and

stress relaxation experiments.

As discussed earlier, a creep and recovery test is
conducted by observing the response of a material to a

constant stress so applied at time t0 and removed at a later

time t1 (Fig. 15.17a). As illustrated in Fig. 15.17b, such a load

will cause a strain eo ¼
so
E

in a linearly elastic material

instantly at time t0. This constant strain will remain in the

material until time t1. At time t1, the material will instantly
and completely recover the deformation. To the same

constant loading condition, a viscoelastic material will

respond with a strain gradually increasing between times

t0 and t1. At time t1, gradual recovery will start. For a
viscoelastic solid material, the recovery will eventually

be complete (Fig. 15.17c). For a viscoelastic fluid, complete
recovery will never be achieved and there will be a residue of

deformation left in the material (Fig. 15.17d).

As illustrated in Fig. 15.18a, the stress relaxation test is
performed by straining a material instantaneously,

maintaining the constant strain level eo in the material, and

observing the response of the material. A linearly elastic
material response is illustrated in Fig. 15.18b. The constant

stress so ¼ Eeo developed in the material will remain as long

as the strain eo is maintained. In other words, an elastic
material will not exhibit a stress relaxation behavior.

A viscoelastic material, on the other hand, will respond with

an initial high stress that will decrease over time. If the mate-
rial is a viscoelastic solid, the stress level will never reduce

to zero (Fig. 15.18c). As illustrated in Fig. 15.18d, the stress

will eventually reduce to zero for a viscoelastic fluid.

Because of their time-dependent material behavior,

viscoelastic materials are said to have a “memory.”
In other words, viscoelastic materials remember the history

of deformations they undergo and react accordingly.
Almost all biological materials exhibit viscoelastic

properties, and the remainder of this chapter is devoted to

the discussion and review of the mechanical properties of
biological tissues including bone, tendons, ligaments,

muscles, and articular cartilage.

Fig. 15.18 Stress relaxation

Fig. 15.17 Creep and recovery

Fig. 15.16 Hysteresis loop for an elastic–plastic material
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15.6 Common Characteristics
of Biological Tissues

One of the objectives of studies in the field of biomechanics is

to establish the mechanical properties of biological tissues so

as to develop mathematical models that help us describe and
further investigate their behavior under various loading

conditions. While conducting studies in biomechanics, it

has been a common practice to utilize engineering methods
and principles, and at the same time to treat biological tissues

like engineering materials. However, living tissues have
characteristics that are very different than engineering mate-

rials. For example, living tissues can be self-adapting and

self-repairing. That is, they can adapt to changingmechanical
demand by altering their mechanical properties, and they can

repair themselves. The mechanical properties of living

tissues tend to change with age. Most biological tissues are
composite materials (consisting of materials with different

properties) with nonhomogeneous and anisotropic proper-

ties. In other words, the mechanical properties of living
tissues may vary from point to point within the tissue, and

their response to forces applied in different directions may be

different. For example, values for strength and stiffness of
bone may vary between different bones and at different

points within the same bone. Furthermore, almost all

biological tissues are viscoelastic in nature. Therefore, the
strain or loading rate at which a specific test is conducted

must also be provided while reporting the results of the

strength measurements. These considerations require that
most of the mechanical properties reported for living tissues

are only approximations and a mathematical model aimed

to describe the behavior of a living tissue is usually limited
to describing its response under a specific loading

configuration.

From a mechanical point of view, all tissues are com-
posite materials. Among the common components of

biological tissues, collagen and elastin fibers have the

most important mechanical properties affecting the overall
mechanical behavior of the tissues in which they appear.

Collagen is a protein made of crimped fibrils that aggregate

into fibers. The mechanical properties of collagen fibrils
are such that each fibril can be considered a mechanical

spring and each fiber as an assemblage of springs.

The primary mechanical function of collagen fibers is to
withstand axial tension. Because of their high length-to-

diameter ratios (aspect ratio), collagen fibers are not effec-

tive under compressive loads. Whenever a fiber is pulled,
its crimp straightens, and its length increases. Like a

mechanical spring, the energy supplied to stretch the fiber

is stored and it is the release of this energy that returns
the fiber to its unstretched configuration when the applied

load is removed. The individual fibrils of the collagen

fibers are surrounded by a gel-like ground substance that
consists largely of water. Collagen fibers possess a two-

phase, solid–fluid, or viscoelastic material behavior with
a relatively high tensile strength and poor resistance to

compression.

The geometric configuration of collagen fibers and their
interaction with the noncollagenous tissue components

form the basis of the mechanical properties of biological

tissues. Among the noncollagenous tissue components,
elastin is another fibrous protein with material properties

that resemble the properties of rubber. Elastin and

microfibrils form elastic fibers that are highly extensible,
and their extension is reversible even at high strains.

Elastin fibers behave elastically with low stiffness up to

about 200% elongation followed by a short region where
the stiffness increases sharply until failure (Fig. 15.19).

The elastin fibers do not exhibit considerable plastic defor-

mation before failure, and their loading and unloading
paths do not show significant hysteresis. In summary, elas-

tin fibers possess a low-modulus elastic material property,

while collagen fibers show a higher modulus viscoelastic
material behavior.

15.7 Biomechanics of Bone

Bone is the primary structural element of the human body.

Bones form the building blocks of the skeletal system that
protects the internal organs, provides kinematic links,

provides muscle attachment sites, and facilitates muscle

actions and body movements. Bone has unique structural
and mechanical properties that allow it to carry out these

functions. As compared to other structural materials, bone

is also unique in that it is self-repairing. Bone can also alter
its shape, mechanical behavior, and mechanical properties to

adapt to the changes in mechanical demand. The major

factors that influence the mechanical behavior of bone

Fig. 15.19 Stress–strain diagram for elastin
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