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Pithy opening quote

®* All models are wrong




Pithy opening quote

®* All models are wrong

® Some models are useful

George Box




Example

® 2 groups of patients who had ankle
osteoarthritis

® Group 1 had a coronal plane deformity in the
affected limb, n=48

® Group 2, neutral alignment, n=64

® Main outcome: MFA—high score means poor
functioning




Example

® Question: Is mean MFA different between
those with a coronal deformity vs. those
neutrally aligned?




Graphing the
data

Dynamite plot

Problems:

1. A lot of space to summarize 4
numbers

2. Error bar in one direction

3. No information as to the shape
of distribution of MFA between
groups

4. No info about potential
outliers

not tilted




Graphing the
data

Strip plot with means and 95%
confidence intervals

not tifted
n=62




Graphing the
data

Another example

The means of these 2 groups
were determined to be

statistically different

Outcome

Positive

Negative




Graphing the
data

Another example

The means of these 2 groups
were determined to be

statistically different

However, the mean for the
Negative group was strongly
influenced by an outlier
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Why do we use statistics?

® Separating the signal from the noise

® Using data from a sample to generalize to a
larger population (in this case generalizing to
the population of ankle OA patients in the US.)




2-sample t-test

¢ Signal divided by noise (in this case the
difference between the means divided by the
standard deviation of the difference)

® The larger the ratio, the stronger the signal

® \We assess the strength of the signal by
assigning a probability to its occurrence.




Back to our
example

The difference in the means
(neutral minus tilted) = 6.4;

Standard deviation of the
difference (also known as the
standard error of the mean) = 2.4

Signal/noise = mean/SE = 2.6

not tifted
n=62




Hypothesis testing

® Structure your research question as a “null”
hypothesis, HO, vs. an “alternative” hypothesis, H1

Null hypothesis- no difference in mean MFA between
those with a coronal deformity and those neutrally
aligned, i.e., no association between MFA and
coronal deformity

Alternative-mean MFA for those with coronal
deformity differs from the mean MFA for those
neutrally aligned, i.e., association between MFA and
coronal deformity




Just a little bit of theory

® Why do we set up our hypotheses this way?

® Most statistical theory based on the
distribution of the null hypothesis

® \We assume a distribution for the null
nypothesis and assign probability of getting a
narticular outcome based on the null
nypothesis




The Normal
Distribution

The “bell” curve

Used to assign probability to the
occurrence of a result

Average (mean) is at the peak

Symmetric around the mean

Central limit theorem: if you
have a large enough sample, the
mean of that sample will come
from an approximate normal
distribution, regardless of the
distribution of the data in the
sample




The Normal
Distribution

The Standard Normal
Distribution

Mean =0
SD=1

Any data can be “standardized”
by subtracting the mean and
dividing by the SD

Basis for many statistical tests
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Hypothesis
testing

From our example, under our
null hypothesis, the difference in
the mean MFA between those
with coronal deformity and those
neutrally aligned is zero.

We assume the standardized

difference comes from a normal
distribution with mean zero and
SD 1—this is the null hypothesis

Alternative hypothesis: mean
difference is not zero.

Probability




Hypothesis
testing

Suppose our standardized mean
difference=1

Based on the null hypothesis that
the true mean difference is zero,
the probability of getting a
difference of 1=0.24

Probability (X=x)




Hypothesis
testing

Note that the probability is the
same if the difference = -1

i.e., symmetry around zero
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Hypothesis
testing

Suppose the difference between
groups = 2

Probability that this difference
comes from a standard normal

distribution with mean zero =
0.05

The farther the difference is from
zero, the less likely that the
difference is zero.

i.e., the more likely the
“alternative” hypothesis is true
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Hypothesis
testing

In most cases, we are interested
in whether the difference in
means is greater than a certain
value, not whether the

difference equals a certain value.

We obtain this probability using
the area under the curve for the
standard normal where total
AUC=1.0

The area shaded in red
represents the probability that
the difference between means is
>=1=0.16

Probability




Hypothesis
testing

Most times we don’t want to
assume the difference is only in
one direction.

Thus we carry out a “two-tailed”
test.

The shaded area corresponds to
the probability that the
difference between means in
either direction is >= 1 (or that
the absolute value of the
difference is >=1)

=0.32

This probability is known as the
p-value
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Hypothesis
testing

The p-value =

The probability, given the null
hypothesis of no differences
between means, that you obtain
a difference at least as large as
(in this case) a difference of 1.

The smaller the p-value, the
more likely that our alternative
hypothesis is true.
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Back to our
example

The absolute value difference in
the means = 6.4;

Standard deviation of the
difference (also known as the

standard error of the mean) = 2.4
Noise/signal = 2.6
p-value = 0.009

i.e., the probability of finding a
difference equal to or larger than
6.4 in either direction, given no
difference is 0.009




The famous 0.05 criteria

® Traditionally, the criteria for a significant
difference is p<=0.05. This criteria is known as
the “Type 1” error.

® Since the p-value for the difference between
means is <=0.05, we reject the null hypothesis
of no difference.

® \We conclude that the difference between the
2 means is significant at p=0.009




What does this result mean?

® That, on average, those with a coronal deformity will
have an MFA 6.4 less than those with neutral
alignment

It does not mean that every person with a coronal
deformity will have a lower MFA than those with
neutral alignment

Statistical significance does not necessarily imply
biological significance—e.g., is 6.4 a meaningful
difference?

In our example, the difference in the direction
opposite of what we would expect




95% confidence intervals

® The interval which contains the true mean
with probability 0.95

® 95% Cl for the mean difference of 6.4 is (1.6,
11.2)

* |f the mean difference is significant at p=0.05,
the 95% Cl will not include 0.




One-tailed vs.
two tailed tests

There are times when we are
only interested in differences in
one direction.

HO: no difference in means

H1: mean for MFA worse (higher)
for the tilted group

Prob(difference>=1 if there is no
difference)

1-tailed test: p=0.16
2-tailed test: p=0.32

One-tailed tests mostly produce
lower (more significant) p-values
then 2 tailed tests.
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One-tailed vs.
two tailed tests

Suppose in our example we are
only interested if MFA for a coronal
deformity is worse (higher) than
the MFA for neutral alignment.

In this case whether tilted minus
neutral is higher than a certain
value.

Here we have tilted minus neutral =
-6.4, standardized difference -2.6

Prob(MFA difference >-2.6) =0.99

We accept the null hypothesis of
no differences in mean MFA.

Probability




One-tailed vs.
two tailed tests

This is a DIFFERENT finding from
the 2-tailed test where we
rejected HO for no differences.

We would miss the fact that the
difference could be in another
direction, which may or may not
have biomechanical implications.

Moral: (almost) never do a 1-
sided test




Errors in
Statistics

Type 1 error = the probability of
rejecting the null hypothesis when
the null hypothesis is true.

Prob(choose H1|HO is true)

Type 2 error = the probability of
accepting the null hypothesis when
the alternative is true

Prob(choose HO|H1 is true)

Suppose we define our hypothesis
test that any standardized
difference in our means greater
than 2 we reject HO in favor of H1,
and any difference less than 2 we
accept HO.

Type 1 erroris in red = 0.05

Type 2 error is in blue = 0.24

Probability




Errors in
Statistics

Type 1 errorisin red
Type 2 error is in blue

Given these distributions for HO
and H1, a decrease in type 2

error results in an increase in
type 1 error.
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Power

Power = 1- type 2 error

= the Prob(choose H1|H1
is true)

Power is used when designing
studies.

***You want to make sure that
you have adequate power to
detect differences of biological/
clinical interest

Probability




Power

For example, suppose prior
research has established that a
meaningful difference in
standardized mean MFA is “a”
points.

Power = the shaded portion of
the plot

Power in this example = 0.76

To increase power, increase
sample size

Probability




Power

Based on the “law of large
numbers”, increasing your
sample size increases the
precision of the estimate of the
sample mean

—> “skinnier” distributions for
the mean under HO and H1

—> increase in power

2
o]
©
o]
o]
|
R




Power

® Only to be used when DESIGNING studies

® Do not carry out post-hoc power analyses.




Confounding

® How do we know that the difference between
groups is not due to some other characteristic,
e.g., age? (i.e., if the mean age of the tilted
group was older, then the decreased
functioning could be due to age)

® This phenomenon is called confounding

® Can adjust for confounding using statistics. In
this example we use linear regression




Linear regression

® The 2-sample t-test described above can be
generalized to a linear regression

® Model: Y =b0 +bl1*X + error

® |n our example: MFA = b0 + b1*group
(group=1 if tilted; =0 if not) = 40.1 — 6.4*group




Linear regression

® To adjust for confounding due to age, just add
age to the Model:

® MFA =b0 + bl*group + b2*age
® 53.1-6.2%group - 0.2*age

® Assumptions:
= Linear association between age and MFA

= The difference in means by coronal deformity is
consistent across age




Linear regression

® 53.1-6.2%group - 0.2*age

® Adjusted for age, the difference between
group means is 6.2.

® This difference is associated with a p-value of
0.011

® Still statistically significant

® Age not a confounder.




“Normalization”

® Control confounding by dividing the outcome
by the confounder

® Results in a “ratio” variable (outcome/

confounder)




“Normalization”

® Hypothesis testing using ratio variables can be
problematic

= Can result in extreme values

= Hypothesis test results can be dependent on the
units of the divisor

= Assumes a linear relationship between numerator
and denominator which may not be true




Back to our example

All subjects in our study received surgery for
ankle arthritis

They were followed at 6 mo, 1, 2 and 3 years
Main questions:
1. Did subjects improve after surgery?

2. Did improvement differ by coronal
deformity?




Back to our example

Specific hypotheses

1.
2.
3.
4.
5.
6.
7.
8.
9.

Did subjects improve from preop to 1, 2 or 3 years?

Did subjects improve from 1 to 2, or 2 to 3 years?

Did subjects without a coronal deformity improve from preop to 1, 2 or 3 years?
Did subjects without a coronal deformity improve from 1 to 2, or 2 to 3 years?
Did subjects with a coronal deformity improve from preop to 1, 2 or 3 years?
Did subjects with a coronal deformity improve from 1 to 2, or 2 to 3 years?

Did improvement from pre-op to 1 year differ by coronal deformity

Did improvement from pre-op to 2 year differ by coronal deformity

Did improvement from pre-op to 3 year differ by coronal deformity




Constructing hypotheses in
complicated study designs

Problem with this approach—too many pair-wise
comparisons!!

The greater the number of tests, the more likely
vou will reject HO when HO is true—i.e. increase
In type 1 error

Carrying out separate tests does not take
advantage of the full data.




Constructing hypotheses in
complicated study designs

Better approach— carry out 2 models

To address

1. Did subjects improve after surgery?

a. Combine data across all time-points

b. Construct a model to test if, MFA changes over time —
the “omnibus test”

c. If significant, then you can carry out pair-wise
comparisons (still need to correct for the increase in type
1 error due to carrying out multiple comparisons)




Constructing hypotheses in
complicated study designs

24 model
To address
2. Did improvement differ by coronal deformity?

a. Combine data across all time-points

b. Carry out omnibus test for whether the pattern of
change in MFA across study time differs by coronal
deformity—in a regression context this is known as a
time by deformity interaction term

c. If omnibus test significant, then do pair-wise
comparisons of interest.




Independent vs. dependent data

Independent: occurrence one observation has
no bearing on any other observations in a set of
data

n our example, one subject’s MFA at baseline
nas no influence on another subject’s MFA at
naseline—the MFA data at baseline are
independent

Many of the standard statistical models (e.g.
linear regression) assume independent data




Independent vs. dependent data

Dependent: occurrence of one observation could
potentially influence another observation in a dataset
differentially from other observations in that dataset

In our example, one subject’s MFA at baseline may be

related to that subject’s MFA at any follow-up, but will
not influence the MFA of any other subject. Here the

MFA data are considered dependent.

Another way of describing this data: repeated
measures




Examples of repeated measure data

Repeated measures across time (our MFA example)

Data on two feet per person (e.g., measuring pressure under the
foot when walking for a sample of subjects

Data on multiple sites within a foot (comparing pressure under the
heel vs. pressure at each of the 5 metatarsals) for a sample of

subjects

Multiple trials per subject—looking at speed of walking in
amputees comparing different prosthetics

Comparison of multiple procedures carried out on a single
specimen—e.g. simulating different surgeries to correct foot
deformities in a sample of foot cadavers—first you simulate the
deformity, then you simulate the correction




Why repeated measures?

® Often you are more interested in within
subject differences. E.g., you may be more
interested if ankle OA surgery improves your
walking speed, as opposed to the surgery
improving walking speed for a population

Within subject differences are usually
measured with more accuracy than between
subject differences




Why repeated measures?

Caveat:

It does you no good to have lots of repeated
measures per subject/specimen, if you only
have a few subjects. (e.g., 1000 repeated
measures on 3 subjects)

Very problematic in generalizing your results to
a larger population




How to analyze
repeated
measures?

not tilted filted

Spaghetti plots

For our example, each colored
line represents an individual

patient MFA trajectory

The thick black line represent the
average MFA at each visit

Study time (mo)




How to analyze repeated measures

data?

Hypothesis testing: Linear mixed effects regression

Separate out error into between and within subject.

Observations within subject are considered

“independent” of other o

Observations between su
“independent” of other o
subjects

pservations within subject

ojects are considered

oservations between




How to analyze repeated measures
data?

Hypothesis testing: Linear mixed effects regression

Linear regression: Y = b0 + b1*X + error

Linear mixed effects regression:

Y =b0 + b1*X + error(between) + error (within)

b0 and bl=fixed effects

error(b) and error(w)= random effects




Back to our
example

Omnibus test for change in MFA
across study time: p<0.0001

MFA =37.1-11.9*m6—14.1*y1
—14.8*y2 - 14.3*y3

Between subject SD: 12.4
Within subject SD: 8.0

not tilted filted

Study time (mo)




Back to our
example

not tilted filted

Omnibus test for differences in
the pattern of change by coronal
deformity: p= 0.0008

Neutral group

MFA =40.0 - 15.5*m6 — 16.7*y1
-17.8*y2—- 17.5*y3

Tilted group

MFA = 33.2 —7.1*m6 — 10.5*y1
~10.6*y2— 9.9%y3

Between subject SD: 12.7

Within subject SD: 7.6 Study time (mo)




LME vs. Repeated Measures ANOVA

Advantages of LME
® Can use with missing data

® Can use with unequal subjects per group or
unequal number of repeated measures per
subject

® Can use with time dependent covariates




Summary of basic concepts

Goal of statistics: separating signal from noise
Visualize your data with appropriate graphics

Two types of errors: type 1 and type 2. Control type
1 error in hypothesis testing. Control type 2 error
with good study design.

Statistical significance does not necessarily imply
biological or clinical relevance

Consider confounding in your analysis

Distinguish independent and dependent data




