

Musculoskeletal Biomechanics BIOEN 520 | ME 527

Session 17A

Test Considerations and Limitations

Review: Sessions 8-16...

- Intro to cell biomechanics...
- Structure-Function-Properties of Musculoskeletal Structures...

Bone, ligaments, tendons, cartilage, & muscle

 Anatomy and Biomechanics of Joints and Joint Systems...

Spine, hip, knee, shoulder, elbow/wrist, and foot/ankle

• Intro to biostats...

Session 17A Discussion Question...

[Q]: During Session 2B, we discussed a number of important test considerations when planning biomechanical experiments... What additional factors should we consider and why?

Hints: 1) Follow this LINK

- 2) The figure below...
- 3) See S17 handout...

Considerations discussed in Session 2B

[Q]: What were some of the test considerations we discussed during Session 2B?

- Research question (hypothesis) / study design
- Biomechanical parameters of interest
- Experimental model (live, cadaver, animal, etc.)
- Environment (temp, humidity, etc.)
- Controls (age, gender, etc.)
- Additional Factors???

S2B-

"Other" Testing Considerations...

- [Q]: Based on the "hints" given, what other factors should be considered?
 - Model selection & inclusion/exclusion criteria
 Affects the validity and applicability ("generalizability") of our tests results...
 - Safety of the subjects and researchers
 - Cost of tissues and running experiments (time and \$)

Model Considerations...

We've discussed numerous model choices...

- Live human volunteers
- Post-mortem humans (PMHS)
- Live animals
- Post-mortem animals
- Non-biologic models
- Analytical/mathematical models
- Inverse dynamics models
- M-S/Forward dynamics models
- Finite element models

Physical

Computational

Model Considerations...

[Q]: Can you think of examples of when model selection and inclusion/exclusion criteria might affect the validity/applicability of our test results?

- Age
- Gender
- Height/Weight
- Pre-existing pathologies

Advantages

- Physiologic human response
- Subject feedback (questionnaire)

Disadvantages (limitations)

- Can't test to injurious (or high risk) levels
- Can be difficult to instrument
- Can't directly measure internal forces/strains
- IRB approval required (privacy/confidentiality)

Historical Example: Colonel John Paul Stapp (1910-1999)

- Conducted acceleration tolerance testing on himself.
- Exposed to over 35 Gs (...much higher than the generally accepted tolerance of 18 Gs)
- Commanded to stop after personally experiencing broken ribs, broken wrist, concussions, "white-outs," "red-outs," etc.
- Ran his final (29th) rocket sled test on Dec 10, 1954. Sled reached a peak velocity of 632 mph and peak accel of 46.2 Gs.

632 mph sled test...

http://www.youtube.com/watch?v=s4tuvOer_GI

Restraint System Example: US Air Force Research Labs

Restraint system tests usually performed using dummies (left), but AFRL able to perform human volunteer testing (right)

Model Considerations (Human Cadavers)...

Advantages

- Can test to injurious/high risk levels
- Can dissect to level of inquiry
- Better fixation of instrumentation

Disadvantages (limitations)

- No neurologic or physiologic response
- Cell death and tissue property changes
- Can be expensive
- Biosafety risks to researcher

Model Considerations (Human Cadavers)...

Examples:

- Obtain tissue properties for devices
- Quantify injury tolerance levels
- Examine device performance
- Evaluate surgical procedures

Model Considerations (Live Animals)...

Advantages

- Testing of new devices while maintaining physiologic function (e.g., biocompatibility)
- No privacy/confidentiality issues

Disadvantages (limitations)

- Difficult to relate findings to humans
- Cost of animal husbandry
- Infectious diseases
- Need IACUC approval
- Protest groups

Model Considerations (Live Animals)...

Examples:

- Evaluate implanted medical devices (Bryan disc before human trials)
- Determine threshold for neurologic injury (MEP/SEP)

Model Considerations (Animal Cadavers)...

Advantages

- Testing of high risk/injurious levels possible
- Less expensive (...than live/humans)
- No privacy/confidentiality issues
- Can dissect to level of inquiry necessary
- Younger tissues more readily available

Disadvantages (limitations)

- Not human
- No physiologic response
- Infectious diseases
- Protest groups

Model Considerations (Animal Cadavers)...

Examples:

Using immature primates to predict pediatric human tissue properties.

Mechanical Property

Human Adult

Human Child

Baboon Data
(Child-to-Adult)

Developmental Age

Mechanics of human pediatric C-spine

- Issues working with cadaver tissues?
 - Biosafety (blood-borne pathogens)
 - Tissue availability (esp. humans)
 - Effects of death on tissue of interest
 - Storage Issues (embalmed/fresh-frozen)
 - Cost (esp. humans)

Freeze-Thaw Effects

Freeze-Thaw Effects

Spinal Cord

Model Considerations (Non-biologic physical

models)

Advantages

- Repeatability
- Instrumentation
- No biohazard risk

- May lack biofidelity
- Initial cost

Model Considerations (Non-biologic models)

Examples:

- Crash test dummies, helmet headforms, etc.)
- Anatomical models (e.g. Sawbones)
- Representative materials (plastic, foam, rubber, etc.)
 to answer the biomechanical question

Case Study: Using two models...

Case Study: Using two models...

C2-C3 Dislocation

ATD

PMHS

Biosafety...

Lab Certification / Personnel Training

Biosafey Level-2 (BSL-2) for bloodborne pathogens

Universal Precautions

Always assume tissue is a potential hazard

Wear PPE appropriate for protocol

scrubs

gloves

head covering

respirator

face shield

lab coat

eye protection

footwear

lead shielding

etc.

Biosafety...

- Tips...
 - Don't be in a hurry
 - If you get frustrated, take a break
 - Don't work alone

Costs of Biomechanical Research...

Examples...

- Post-mortem animal free-\$50 + storage and disposal fees
- Live human testing compensation for participation (\$25-100) + IRB
- Post-mortem human \$100-\$5000 + storage and disposal fees
- Live animal testing husbandry costs up to \$32/day (approx. \$11,800/yr) + fees
- Anthropomorphic Test Devices >\$100,000 for fully instrumented dummy

Costs of Biomechanical Research...

UW Animal Husbandry Costs

Animal	Approx cost per year
Mouse	\$380
Rat	\$1,000
Rabbit	\$1,300
Cat	\$9,000
Dog	\$9,300
Pig	\$11,800

^{*}Doesn't include veterinary fees, initial cost of animal, or processing fees