

Musculoskeletal Biomechanics BIOEN 520 | ME 527

Session 3A

Tools of the Trade: (Force, displacement, and DAQ)

Review: Session 2B...

- Reviewed the "Scientific Method"
- Examined study designs often used in biomechanical research
- Discussed two key input/output variables used in biomechanics
- Considered metrics used to characterize/ compare biomechanical properties
- Explored experimental models commonly used in biomechanics research along with other factors

In-Class Group Discussion...

[Q]: In the papers by Lee et al. and Whittaker et al., compare and contrast the study designs (including models and statistical analyses used in hypothesis testing)?

Session 3A Discussion Questions...

- [Q]: What are ways to apply loads/displacements in biomechanics experiments?
- [Q]: What is a transducer/sensor?
- [Q]: When choosing a sensor, what characteristics should be considered?
- [Q]: What sensors are used to measure loads?
- [Q]: What sensors measure displacements?
- [Q]: What is "DAQ" and why do we need it?

Test Frames/Apparatus...

[Q]: What types of equipment are used in biomechanical testing to apply loads/disp?

- MTS/Instron machines
- Simulators
- Sleds
- Custom test frames
- Live animals
- Human subjects

[Q]: What is a transducer?

Latin tranducere -- 'to convert

 A device that converts one form of energy to another (with the same information content as the original)

 Note: no transducer is responsive to only one form of energy...

- [Q]: What's the difference between a transducer and a sensor? (...often used interchangeably)
 - Both make measurements...
 - Transducer converts energy
 - Sensor often contains a transducer, but may not (...no requirement to convert energy -e.g., digital output)

[Q]: In order to accurately quantify what's being measured, what characteristics are important when choosing a transducer?

Static Characteristics

Accuracy

Closeness of measurements to the true value (typically % FSO)

Precision

Closeness of repeated measurements to one another (typically % FSO)

Static Characteristics

Resolution

Smallest discernable input increment (% FSO)

Sensitivity

Degree of responsiveness to an incoming signal (Output range / Input range)

Static Characteristics

Threshold

Smallest change in discernable measurement (measurement units)

Range

Operational full scale range of the transducer (measured min - max values)

Linearity

Degree to which a calibration curve fits a straight line

Static Characteristics

Drift

Change in output for zero input over time (meas. units)

Hysteresis

Differing outputs for increasing and decreasing inputs (meas. units)

Dynamic Characteristics

 Frequency Response — The accuracy of a transducer's output within a specific band (% diff or dB)

- Transient Response Transducer's response to a step change (time)
- Response Time Time required for the output to rise to a specified percent of its final value as a result of a step change (time)

Dynamic Characteristics

- Rise Time The length of time for the output to rise from 10% to 90% of its value
- Natural Frequency The frequency at which the sensing element is set into free oscillation
- Damping The energy dissipating characteristic which determines the upper limit of frequency response

What is the most common instrument [Q]: used to measure forces? Load Cell or **Force Transducer**

The two most common "transduction" methods for load cells are:

- Strain Gage
- Piezoelectric

- Strain Gage Force Transducer
 - Small deformations at high loads
 - Wide range of force measurement
 - Temperature compensated
 - Inexpensive

- Strain Gage Buckle Force Transducer
 - In-situ tension measurement
 - Bending of frame is measured by the strain gages
 - Has similar features to a strain gage load cell

- Piezoelectric Force Transducer
 - Extremely sensitive with high signal output
 - Crystal deformations very small
 - Excellent dynamic characteristics
 - NOT for static applications
 - Charge amplifiers expensive
 - Nonlinear output

- Strain Gage Pressure Transducer
 - Diaphram design
 - 4-Gage system or
 - Rosette

- Piezoelectric Pressure Transducer
 - Similar characteristics to strain gage based force transducers
 - Better dynamic response, but not for static applications

- Fiber-Optic Pressure Transducer
 - Miniaturization possible
 - Range based upon bladder
 - Immune to RFI/EMI interference
 - Robust temperature response
 - Intrinsically safe

- Resistance Pressure Transducer
 - Pressure distribution over large areas
 - Long settling time
 - Not dynamic
 - Drift

- Contact Film Pressure Transducer
 - 2 films placed together (developer + pockets of dye)
 - Can resolve joint contact pressures
 - Loading rate specific
 - Shear stresses not accounted for
 - One time use (and only peak pressure)

Displacement Measurement...

Inductive Displacement Transducer

Linear Variable Differential Transformer

- Low force requirements
- Infinite resolution
- Large ranges
- Tunable dynamic response

Displacement Measurement...

- Resistive Displacement Transducers
 - Foil strain gages
 - Potentiometers (Linear or rotary)
 - Liquid metal strain gages

(Large deformations, non-linear)

Displacement Measurement...

- Optical Motion Tracking Systems
 - Photodiode arrays
 - Video/Infrared systems
 - High-speed imagers

"DAQ"

[Q]: What is "DAQ" and why do we need it?

Data Acquisition system – automates data collection

Main Considerations: Sampling Rate and "Bit" resolution (may limit sensor resolution...)

"Brain Teaser"...

If you have a 100kN load cell, what's the difference in sampling resolution between a 12 bit and 16 bit DAQ board?

