

Musculoskeletal Biomechanics BIOEN 520 | ME 527

Session 5A

Histology and Biochemistry

What is Tissue?

OED: Any of the distinct types of material of which animals or plants are made, consisting of specialized cells and their products.

How many tissue types are there?

- Nerve
- Epithelial
- Connective Tissue
- Muscle

Nerve

Function:

- Sensing stimuli
- Transmitting signals

http://www.brainmuseum.org/

Epithelial

Function:

- Protection
- Secretion
- Absorption
- Excretion
- Sensory perception
- Diffusion
- Cleaning
- Reduces friction

http://anatomycorner.com/histology/

Connective Tissue

Muscle

Function:

- pumps blood
- Contracts and moves part of the skeleton
- Contracts to help exude contents

How does this relate to mechanics?

What is mechanical behaviour dependent on?

- Constituents
- Structure

International Iron & Steel Institute, 2006

Traditional Engineering Biology

Constituents

How do we quantify the constituents of a tissue?

What do tissues consist of?

- Water
- Proteins (extracellular matrix: collagen, elastin)
- Carbohydrates (ground substance)
- Lipids
- Nucleic acids

Biochemical Analysis

Used to evaluate the composition and function of tissue

Many methods to evaluate the same component

Techniques

- Physical characteristics
 - Differences in charge and/or weight
 - Centrifugation
 - Electrophoresis
 - Chromatography
- Chemical or enzymatic reactions
 - biological activity
 - UV absorption or colour change

Freeman et al. Biochemistry

Interlab.com

Concentration

Structure

How do we examine the structure of tissue?

Histology: The study of the microscopic anatomy of cells and tissues

Tissue Processing

What do we need to consider?

- How fresh is tissue?
- What has been done to the tissue before?
- What do we want to look at?
 - How big is the structure you want to look at?
 - What stain, label or enzyme reaction
- What do we want to do with the images?
 - Just take pictures
 - Make measurements

Tissue Processing

Stains, labels and enzyme reactions General structure

Haematoxylin and Eosin (H&E)

- Haematoxylin
 - Haematin is the active ingredient of haematoxylin
 - Haematin demonstrates cell nuclei
- Eosin
 - Counterstain
 - Mechanism of action not known but believed to be electrostatic in nature

General Structure: Plantar Tissue

Collagen

Massons trichrome

- Many different formes
- Collagen is blue

Picro Sirius Red

 Enhances the birefringence of collagen fibres, which is largely due to co-alinged molecules of Type I collagen

Collagen: Skin

Elastin

Modified Hart's

Verhoffs

Elastin: Plantar Tissue

Pictures are great to have but.....

How do we define differences in tissue features?

Qualitative description

- Pattern recognition
- Changes may be too small
- Subjective estimations are remarkably inaccurate

Objective measurements needed Methods?

Quantitative Evaluation

- Densitometry (or histophotometry)
 - Measurement of the absorption
- Morphometry
 - Quantitative description of a structure
- Stereology
 - Defined protocol that allow direct derivation of quantitative features of structures from two dimensional sections on the basis of geometricostatistical reasoning

Stereology

Defined protocol that allow direct derivation of quantitative features of structures from two dimensional sections on the basis of geometrico-statistical reasoning

Structural information is lost when embedded structures are sectioned

The science of estimating geometrical quantities

Stereology

Foundation of the study is important

What do we need to consider?

- Sampling
 - Sampling should be uniformly random; every part of the sample needs to have an equal chance of being selected for measurement (sampling bias)
- Measurements
 - Sample must be interrogated in the same way (systematic bias)

Bias

Just because you have a small sample deviation, it doesn't mean your value is accurate!

Accuracy comes before precision

Process

- Plan the investigation
 - Feature of interest
 - Properties that can be measured
 - Orientation
- Perform the investigation
 - Sample processing
 - Make unbiased selection from which measurements are made
 - Analysis

What are some measurement?

- Area or Volume
- Length
- Surface
- Thickness
- Number

How does isotropy change the orientation of sample?

- Particular orientation
- Well defined orientations (vertical sections)
- Isotropic orientation (not common)

Remove sample bias

Unbiased selection

Geometric probes

- Point grids
- Sampling frames (optical dissectors)
- Line grids
- Sweeping planes

Unbiased selection: Point grid

Area:

 $A = \Delta x. \Delta y. P$

Volume:

 $V = S. t. \Delta x. \Delta y. \Sigma P$

Things to keep in mind:

- Section thickness (t)
- Number of sections (S)

Unbiased selection: Optical Dissector

What is wrong with this method if you are using it to determine numerical density?

Unbiased selection: Number estimations

Things to keep in mind:

- Sections need to be thick
- Decide on a unique/ characteristic point to count

Unbiased selection: Line probes

Analysis

Defined protocol that allow direct derivation of quantitative features of structures from two dimensional sections on the basis of geometrico-statistical reasoning

Statistics are important for stereological analysis

Good statistical practice is based upon good experimental practice

Stereology is a science in and of itself!

Things to remember:

- Remove bias
- Perform a smaller scale pilot to determine probe features, sampling design
- Always be alert (reference trap)

Efficient stereological design avoids all known sources of experimental bias, and allows for data collection for maximum efficiency

Experimental Design

- All aspects of experimental design must be planned carefully through selection of features to be evaluated through to the analysis
- Even small details count for a lot

Summary

Constituents : Biochemistry

Structure : Histology

Welcome Library

