

Musculoskeletal Biomechanics BIOEN 520 | ME 527

Session 6B
3D Chewing
Kinematics

Purpose

- Take kinematic data collected by externallymounted sensors and transform it (via fiducial points) to determine the 3D motion of the jaw
- Why?

Methodology

- One subject
- Custom oral stents (retainers) for the upper and lower teeth

Acrylic mounting block

Carbon fiber "pin"

Polhemus sensor

Similar set-up from a study by Yoon et al.¹

Methodology

- Electromagnetic tracking systems
- Basic components: active transmitter and passive sensor(s)

Advantages

- High precision and accuracy with proper set-up
- No line-of-sight problems

Polhemus FASTRAK system

Disadvantages

- Cannot have metal in the field
- Precision and accuracy decrease as the distance between the transmitter and sensor(s) increase

Methodology

- Fiducial points
 - Purpose: Landmarks which are used to define the local, embedded coordinate systems for the segments of interest
 - 8 total (4 on upper teeth and 4 on lower teeth)

Black dots denote the approximate positions of the fiducial points on the teeth

Data Collection

- Digitization of the fiducial points
 - Purpose: Establish the position of each fiducial point relative to its Polhemus sensor
- Chewing trials
 - Trial #1: Control
 - Trial #2: Gummy bear
 - Subject chewed at a self-selected rate for ~15-30 sec
 - Polhemus data acquired by a laptop sampling at 17 Hz

Polhemus digitizing stylus

Data Analysis

- This is where YOU come in...
- Steps
 - Part I:
 - Transform the sensor kinematics to the fiducial points
 - Part II:
 - Define local, embedded coordinate systems
 - Determine the 3D kinematics of the lower teeth <u>relative to</u> the upper teeth
 - Part III:
 - Animate subject-specific models of the upper and lower teeth

Resources

- Class handouts
 - "Joint Coordinate Systems"
 - "Spatial Descriptions and Transformations"
- Me!
 - simsdahl@uw.edu