Musculoskeletal Biomechanics
BIOEN 520 | ME 527
Session 7A
Computational Modeling
Review: Session 5A, 5B and 6

• Imaging in Biomechanics
 ▪ The Matrix
 ▪ The Beatles

• Biochemistry and histology
 ▪ Constituents
 ▪ Structure
 • Removing bias
 ▪ Don’t mouth pipet

• Tour and lab at ABL

• Homework #1
Session 7 Overview...

- Review sessions 5A, 5B, and 6
- Class modeling experiences
- Define model and simulation
- Motivation - why develop models?
- Types of models
- Important modeling considerations
- Specific modeling examples
Class modeling experiences

• PhD student with thesis topic
• PhD student
• MS student with thesis topic
• MS student
• Undergraduate research
• Computational modeling class
• Imagine a mass sitting on a spring
Model vs. Simulation

- **Model**
 an attempt to represent reality

- **Simulation (or computer simulation)**
 experimentation using a model

Nigg 1998
Computational modeling/simulation

- **Computer modeling:**
 refers to the setting up of mathematical equations to describe the system of interest, the gathering of appropriate input data, and the incorporation of these equations and data into a computer program.

- **Computer simulation:**
 is restricted to mean the use of a validated computer model to carry out experiments, under carefully controlled conditions, on the real-world system that has been modeled.

Vaughn 2002
Motivation - why develop models?

There are three ways to study part of the body: living subjects, cadavers, and computation models. Each has its own place and role.

Perhaps a future role for anatomically correct test beds?
Why develop models?

• Addresses various issues with living subjects and/or cadavers:

 expensive

 availability (age, vascular state)

 unethical

 some things cannot be measured directly

 some things cannot be measured safely

 cannot be reset - “one and done”

 cannot conduct parametric analyses

 absolute repeatability

 time required
Why develop models?

• Model complexity
 what level of detail do you need?

• Harvard tuned track
 http://tinyurl.com/kzyyydm

• Flexible Muscle-Based Locomotion for Bipedal Creatures
 http://vimeo.com/79098420
Why develop models?

• Limitations:
 ▪ validation difficult, but necessary
 ▪ very time consuming to get it right
 ▪ complex (advanced mathematics, numerous parameters, simulation times, etc.)
 ▪ difficult to transfer results to real world (i.e., what do results really mean?)
Types of models

- analytical vs. numerical or computational
- black box/phenomenological vs. physiologic
- continuous vs. discrete (lumped parameter)
- forward vs. inverse
Important modeling considerations

- purpose/question/motivation
- previous research
- level of complexity/assumptions
- geometry/anatomy/morphometry
- material properties
- boundary conditions
- validation
- simulation/results
- limitations/interpretation/future work
Specific modeling examples

- lumped parameter (tuning track)
- inverse dynamic (gait analysis)
- musculoskeletal (SIMM, OpenSIM, Anybody)
- forward dynamic (simulation of walking)
- finite element modeling
Specific modeling examples

• lumped parameter (tuning track)
• inverse dynamic (gait analysis)
• musculoskeletal (SIMM, OpenSIM, Anybody)
• forward dynamic (simulation of walking)
• finite element modeling
Lumped Parameter Models

Fig. 1. Schematic representing the separate role of descending commands (rack-and-pinion) and muscle properties plus local reflexes (damped spring). The motion of the rack and pinion element determines the influence of track stiffness on step length. The runner's mass and the damped spring determine the influence of track stiffness on ground contact time.
Lumped Parameter Models

• define a system with a finite number of state variables

• able to describe system behavior with ODE instead of PDE
Lumped Parameter Models

• basic types of elements
 ▪ spring
 ▪ dashpot
 ▪ mass

• linear, rotational

• friction, inertial
Lumped Parameter Models

- Kelvin-Voigt
- Maxwell
- Standard linear solid
Lumped Parameter Models

- Second order systems

![Diagram showing a second order system with labeled b, k, and F.]
Lumped Parameter Models

- Second order systems

\[m\ddot{x} + b\dot{x} + kx = F \]
Lumped Parameter Models

- Second order systems - free vibration

\[m\ddot{x} + b\dot{x} + kx = 0 \]

\[\ddot{x}(t) + 2\zeta\omega \dot{x}(t) + \omega^2 x(t) = 0 \]

\[\omega = \sqrt{\frac{k}{m}} \]

\[\zeta = \frac{b}{2m\omega} \]
Lumped Parameter Models

Step Response of Second-Order System with Various Damping Ratios

\[\zeta = 0 \Rightarrow \text{Undamped} \]
\[0 < \zeta < 1 \Rightarrow \text{Underdamped} \]
\[\zeta = 1 \Rightarrow \text{Critically damped} \]
\[\zeta > 1 \Rightarrow \text{Overdamped} \]
Lumped Parameter Models

Step Response for Various Damping Ratios

\[c(\omega_n t) \]

\[\zeta = 0.1 \]

\[\zeta = 0.2 \]

\[\zeta = 0.4 \]

\[\zeta = 0.5 \]

\[\zeta = 0.6 \]

\[\zeta = 0.8 \]
Lumped Parameter Models

Nigg 1998
Lumped Parameter Models

• Intact limb vs. transtibial amputee

Klute 2004
Lumped Parameter Models

- Intact limb vs. transtibial amputee
 - Top – 4 model plots
 - Bottom – 6 amputee gait trials

Klute 2004
Lumped Parameter Models

- Intact limb vs. transtibial amputee
 - First 6 trials – amputee gait; 7th is average data
 - Last 4 trials – adjust model to individual behavior

Klute 2004
Specific modeling examples

- lumped parameter (tuning track)
- inverse dynamic (gait analysis)
- musculoskeletal (SIMM, OpenSim, Anybody)
- forward dynamic (simulation of walking)
- finite element modeling
Inverse dynamic (gait analysis)

- Estimate joint forces and torques from rigid body kinematics, external forces, and inertial forces.
- Not only in laboratory now.
Inverse dynamic (gait analysis)

- Most common example

\[\sum F = F_R + mg + F_{air} = ma \]

\[\sum F = F_R + m_f g + F_A = m_f a_f \]
Specific modeling examples

- lumped parameter (tuning track)
- inverse dynamic (gait analysis)
- musculoskeletal (SIMM, OpenSim, Anybody)
- forward dynamic (simulation of walking)
- finite element modeling
Musculoskeletal models

- Tool kits that allow for modeling, animation, and analysis of 3D musculoskeletal systems.
- Includes representations of joints, bones, muscles, ligaments, and other structures.
- Calculate the joint moments that each muscle can generate at any body positions.
- Can also be used for forward or inverse dynamic analyses.
- Used to model walking, cycling, running, jumping, weight lifting, reaching, and throwing.
Musculoskeletal

- SIMM – software for interactive musculoskeletal modeling

http://www.musculographics.com
Musculoskeletal

- OpenSim

https://simtk.org/home/opensim and http://opensim.stanford.edu
Musculoskeletal

- Anybody

http://www.anybodytech.com
Specific modeling examples

- lumped parameter (tuning track)
- inverse dynamic (gait analysis)
- musculoskeletal (SIMM, OpenSim, Anybody)
- forward dynamic (simulation of walking)
- finite element modeling
Forward dynamic

- Estimate limb kinematics from joint forces and torques, or even individual muscle forces.
- Flexible Muscle-based Locomotion
Specific modeling examples

- lumped parameter (tuning track)
- inverse dynamic (gait analysis)
- musculoskeletal (SIMM, OpenSim, Anybody)
- forward dynamic (simulation of walking)
- finite element modeling
Finite element modeling

- Computerized method for predicting response of an object to real world forces, vibrations, heat, fluid flow, etc.
- Break down a real object into a large number (1,000s to 100,000s) of very small little cubes (finite elements).
- Mathematical equations to predict behavior of each element.
Finite element modeling

- Computational foot modeling