

Musculoskeletal Biomechanics BIOEN 520 | ME 527

Session 7A

Computational Modeling

Review: Session 5A, 5B and 6

- Imaging in Biomechanics
 - The Matrix
 - The Beatles
- Biochemistry and histology
 - Constituents
 - Structure
 - Removing bias
 - Don't mouth pipet
- Tour and lab at ABL
- Homework #1

Session 7 Overview...

- Review sessions 5A, 5B, and 6
- Class modeling experiences
- Define model and simulation
- Motivation why develop models?
- Types of models
- Important modeling considerations
- Specific modeling examples

Class modeling experiences

- PhD student with thesis topic
- PhD student
- MS student with thesis topic
- MS student
- Undergraduate research
- Computational modeling class
- Imagine a mass sitting on a spring

Model vs. Simulation

- Model
 an attempt to represent reality
- Simulation (or computer simulation)
 experimentation using a model

Computational modeling/simulation

Computer modeling:

refers to the setting up of mathematical equations to describe the system of interest, the gathering of appropriate input data, and the incorporation of these equations and data into a computer program.

Computer simulation:

is restricted to mean the use of a validated computer model to carry out experiments, under carefully controlled conditions, on the real-world system that has been modeled.

Vaughn 2002

Motivation - why develop models?

There are three ways to study part of the body: living subjects, cadavers, and computation models. Each has its own place and role.

Perhaps a future role for anatomically correct test beds?

Foot

Why develop models?

 Addresses various issues with living subjects and/or cadavers:

```
expensive
availability (age, vascular state)
unethical
some things cannot be measured directly
some things cannot be measured safely
cannot be reset - "one and done"
cannot conduct parametric analyses
absolute repeatability
time required
```

Why develop models?

- Model complexity
 what level of detail do you need?
- Harvard tuned track

http://tinyurl.com/kzyyydm

 Flexible Muscle-Based Locomotion for Bipedal Creatures

http://vimeo.com/79098420

Fig. 1. Schematic representing the separate role of descending commands (rack-and-pinion) and muscle properties plus local reflexes (damped spring). The motion of the rack and pinion element determines the influence of track stiffness on step length. The runner's mass and the damped spring determine the influence of track stiffness on ground contact time.

Why develop models?

- Limitations:
 - validation difficult, but necessary
 - very time consuming to get it right
 - complex (advanced mathematics, numerous parameters, simulation times, etc.)
 - difficult to transfer results to real world (i.e., what do results really mean?)

Types of models

- analytical vs. numerical or computational
- black box/phenomenological vs. physiologic
- continuous vs. discrete (lumped parameter)
- forward vs. inverse

Important modeling considerations

- purpose/question/motivation
- previous research
- level of complexity/assumptions
- geometry/anatomy/morphometry
- material properties
- boundary conditions
- validation
- simulation/results
- limitations/interpretation/future work

Specific modeling examples

- lumped parameter (tuning track)
- inverse dynamic (gait analysis)
- musculoskeletal (SIMM, OpenSIM, Anybody)
- forward dynamic (simulation of walking)
- finite element modeling

Specific modeling examples

- lumped parameter (tuning track)
- inverse dynamic (gait analysis)
- musculoskeletal (SIMM, OpenSIM, Anybody)
- forward dynamic (simulation of walking)
- finite element modeling

Fig. 1. Schematic representing the separate role of descending commands (rack-and-pinion) and muscle properties plus local reflexes (damped spring). The motion of the rack and pinion element determines the influence of track stiffness on step length. The runner's mass and the damped spring determine the influence of track stiffness on ground contact time.

- define a system with a finite number of state variables
- able to describe system behavior with ODE instead of PDE

- basic types of elements
 - spring
 - dashpot
 - mass
- linear, rotational
- friction, inertial

- Kelvin-Voigt
- Maxwell

Standard linear solid

Second order systems

Second order systems

$$m\ddot{x} + b\dot{x} + kx = F$$

Second order systems - free vibration

$$m\ddot{x} + b\dot{x} + kx = 0$$

$$\ddot{x}(t) + 2\zeta\omega\dot{x}(t) + \omega^2x(t) = 0$$

$$\omega = \sqrt{k/m}$$

$$|\zeta = b/2m\omega|$$

Step Response of Second-Order System with Various Damping Ratios

Step Response for Various Damping Ratios

Intact limb vs. transtibial amputee

Klute 2004

- Intact limb vs. transtibial amputee
 - Top 4 model plots
 - Bottom 6 amputee gait trials

Klute 2004

- Intact limb vs. transtibial amputee
 - First 6 trials amputee gait; 7th is average data
 - Last 4 trials adjust model to individual behavior

Klute 2004

Specific modeling examples

- lumped parameter (tuning track)
- inverse dynamic (gait analysis)
- musculoskeletal (SIMM, OpenSim, Anybody)
- forward dynamic (simulation of walking)
- finite element modeling

Inverse dynamic (gait analysis)

- Estimate joint forces and torques from rigid body kinematics, external forces, and inertial forces.
- Not only in laboratory now.

Inverse dynamic (gait analysis)

Most common example

Specific modeling examples

- lumped parameter (tuning track)
- inverse dynamic (gait analysis)
- musculoskeletal (SIMM, OpenSim, Anybody)
- forward dynamic (simulation of walking)
- finite element modeling

Musculoskeletal models

- Tool kits that allow for modeling, animation, and analysis of 3D musculoskeletal systems.
- Includes representations of joints, bones, muscles, ligaments, and other structures.
- Calculate the joint moments that each muscle can generate at any body positions.
- Can also be used for forward or inverse dynamic analyses.
- Used to model walking, cycling, running, jumping, weight lifting, reaching, and throwing.

Musculoskeletal

SIMM – software for interactive musculoskeletal modeling

Musculoskeletal

OpenSim

https://simtk.org/home/opensim and http://opensim.stanford.edu

Musculoskeletal

Anybody

Specific modeling examples

- lumped parameter (tuning track)
- inverse dynamic (gait analysis)
- musculoskeletal (SIMM, OpenSim, Anybody)
- forward dynamic (simulation of walking)
- finite element modeling

Forward dynamic

- Estimate limb kinematics from joint forces and torques, or even individual muscle forces.
- Flexible Muscle-based Locomotion

Specific modeling examples

- lumped parameter (tuning track)
- inverse dynamic (gait analysis)
- musculoskeletal (SIMM, OpenSim, Anybody)
- forward dynamic (simulation of walking)
- finite element modeling

Finite element modeling

- Computerized method for predicting response of an object to real world forces, vibrations, heat, fluid flow, etc.
- Break down a real object into a large number (1,000s to 100,000s) of very small little cubes (finite elements).
- Mathematical equations to predict behavior of each element.

Finite element modeling

Computational foot modeling

