

Development of a biplane fluoroscope at the VA Puget Sound

William R. Ledoux, Joseph M. Iaquinto, Richard Tsai, Bruce Sangeorzan, Grant Marchelli, Matthew Kindig, Eric Thorhauer, Duane Storti, and David Haynor

RR&D Center of Excellence for Limb Loss Prevention and Prosthetic Engineering, VA Puget Sound

Departments of Mechanical Engineering, Radiology, Orthopaedics & Sports Medicine, University of Washington

Motivation for biplane fluoroscope development

• CT Weblittink of WRIC cetterly, I Warth of the Resistanche, 124, 126016w 2011 Engineering, 133, 2011

Arndt et al., 2007

Invasive; not used for routine clinical care

Fluoroscopy systems

De Clercq et al., 1994

Single plane; exposure to radiation

Fluoroscopy systems

Yamaguchi et al., 2009

hindfoot only; exposure to radiation; 3D-2D

Fluoroscopy systems

Li et al., 2008

Caputo et al., 2009

Portion of stance; exposure to radiation

- Custom biplane room too expensive
 - Henry Ford Hospital, U Pittsburgh, Brown
- C-arms
 - Mass General Hospital, Duke
- Modify existing C-arms
 - Steadman-Philippon Research Institute
- Hardware:
 - Two Philips BV-Pulsera C-arms
- Software:
 - Customized

Foot phantom

www.phantomlab.com

Dynamic data collection

Philips BV Pulsera C-Arms

- Typical hospital C-arm
- 30 pulses/s or continuous

Synchronizing systems

Disassembling C-arms

Custom mounting devices

Replacing cameras

Final floor

Laser alignment

Customized software

- Matlab, C/C++, CUDA
- Phase I: distortion and bias correction,
 3D calibration
- Phase II: generation of digital reconstructed radiographs (DRRs)
- Phase III: implementation of similarity measures and comparison methods
- Phase IV: speed and memory optimization

Distortion correction

Flat-field correction

3D Calibration

3D calibration revised

Validation: Bead-based

- Machined block or "wand"
 - 1.6mm tantalum beads
 - measured within 7 microns
- Wand translated and rotated via a 1 micron precision stepper-motor (static testing)
- Wand manually waved though FOV at ~0.5m/s (dynamic testing)

Validation: Bead-based, Static

- Average translational accuracy = 0.0811 mm
- Average translational precision = ± 0.0103 mm
- Average rotational accuracy = 0.1541°
- Average rotation precision = \pm 0.1382 °

Validation: Bead-based, Dynamic

- Average accuracy = 0.1260 mm
- Average precision = \pm 0.1218 mm

Validation: Bone-based

- Bones in foam block
 - 1.6mm tantalum beads

• Block translated and rotated via a 1 micron

precision

 Block ma (dynamic at $\sim 1 \text{ m/s}$

Α

В

Validation: Bone-based, Static

GUI: unoptimized

GUI: optimized

