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1)	Jumping	to	conclusions.	(3	pts)	

In	this	problem	we	would	like	to	compute	the	natural	frequency	of	
your	body	supported	by	your	ankle	and	foot	(like	in	many	previous	
ankle	problems).		As	we	mentioned	in	class,	the	natural	frequency	(f)	is		
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where	k	is	the	spring	constant	and	m	is	the	mass.	

(a)	Write	an	equation	for	the	spring	constant	(k)	as	a	function	of	the	stiffness	of	
tendon	(Εtendon)	and	the	area	(A)	and	length	(L)	of	the	tendon	and	estimate	it’s	value	
if	Εtendon		=		600	MPa,		A	=	0.5	cm2	and	L	=	20	cm.	

(b)	If	your	mass	is	100	kg,	what	is	your	natural	frequency?	

(c)		Explain	how	you	experimentally	would	test	this	hypothesis.		Attempt	to	do	so.	

		

2)	Muscle	force,	power,	and	efficiency	(5	pts).						

Muscle	force	(F)	declines	with	increasing	shortening	velocity	(v)	according	to	Hill's	

equation:	
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where	v	is	the	shortening	velocity,	To	is	the	isometric	(non-shortening)	force,	and	
the	constants	a	and	b	have	values	that	vary	among	muscle.	

(a)		For	Hill's	equation	to	be	dimensionally	correct,	what	must	be	the	dimensions	of	
the	constants	a,	b,	and	To?	(you	can	indicate	either	dimensions	or	specify	units).	(1	
pt)	

(b)		Several	authors	(e.g.	Y.C.	Fung	or	T.	McMahon)	report	that	the	non-dimensional	
ratios	b/vmax	and	a/To	are	approximately	equal	to	1/4	for	many	muscles.		Here,	vmax	
is	equal	to	the	maximum	shortening	velocity	for	muscle	(for	zero	force).			Rewrite	
Hill's	equation	to	express	a	dimensionless	force	(F/To)	as	a	function	of	
dimensionless	shortening	velocity	(v/vmax).			(1	pt)	



(c)		Like	force,	the	mechanical	power	output	of	muscle	also	depends	on	shortening	
velocity.		The	mechanical	power	output	is	the	rate	at	which	mechanical	work	is	
done.			Using	your	new	form	of	Hill's	equation,	write	an	equation	that	expresses	the	
mechanical	power	output	of	muscle	in	terms	of	shortening	velocity	(v),	maximum	
shortening	velocity	vmax	and	isometric	tension	To.	(1	pt)		

(d)		Graph	both	the	force	and	power	output	as	a	function	of	velocity	for	a	muscle	
whose	maximum	isometric	tension	is	1	N	and	the	maximum	shortening	velocity	is	1	
m/s.	(1	pt)	

(e)	Force	and	power	are	just	two	measures	of	muscle	performance.		Efficiency	is	yet	
another	such	measure	and	is	defined	as	the	ratio	of	the	mechanical	power	output	to	
the	rate	at	which	muscle	consumes	energy.		The	energy	consumption	rate	of	muscle	
(its	metabolic	rate)	increases	linearly	as	shortening	velocity	increases.	At	isometric	
conditions,	muscle	consumes	energy	(measured	in	ATP	utilization)	at	a	rate	of	about	

0.4	mM	ATP/s.			At	maximum	shortening	
velocity,	it	consumes	energy	at	a	rate	of	about	
1.5	mM/s.		Using	Power	divided	by	ATP	
consumption	rate,	plot	the	efficiency	of	
contraction	as	a	function	of	shortening	
velocity	(v)		with	v	ranging	from		0	to	vmax.	(1	
pt)	
	
	
	

The	figure	to	the	left	(He	et	al.,	2000,	ATP	Consumption	and	Efficiency	of	Human	Single	Muscle	Fibers	
with	Different	Myosin	Isoform	Composition,	Biophysical	Journal,	79:945-961)	plots	the	rate	of	energy	
consumption	by	muscle	as	a	function	of	its	shortening	velocity.		The	maximum	shortening	velocity	
(vmax)	occurs	at	about	1	L/s	(that	is	1	muscle	length	per	second).			

	

	

3.		Discussion	points:		choose	either	(a)	or	(b)	(1	pt)	
	
(a)	The	ATP	consumption	(APTase)	rate	varies	from	muscle	type	to	muscle	type.		
For	example,	fast	fibers	in	the	figure	above	use	more	energy	than	slow	ones	and	the	
slope	of	the	ATP	consumption	rate	versus	shortening	velocity	is	lower	for	slow	
fibers.		Would	velocity	for	the	best	efficiency	occur	at	faster	or	slower	speeds	for	the	
fast	fiber?	
	
(b)	Under	what	conditions	would	operating	a	maximum	power	output	be	better	
than	maximum	efficiency?	
	
	
	



	
4.		Another	paper	(1	pt)	
	
Like	a	prior	paper	you	read	previously	in	this	class,	the	authors	raised	an	idea	
(hypothesis)	towards	the	end	of	the	paper	that	may	not	have	been	directly	tested	by	
the	experiments	and	data	presented.		The	paper	by	George	et	al.,	(2013)	asserts	that	
a	temperature	gradient	leads	to	a	functional	gradient	and	the	potential	of	energy	
storage	in	cross-bridges.		In	particular,	they	state	that			

“In	addition	to	some	attachment	at	the	extrema	of	the	length	cycle.	At	these	
intermediate	temperatures,	cross-bridges	that	remain	bound	at	the	very	end	of	
lengthening	or	shortening	can	store	energy	in	their	axial	or	radial	extension	
respectively.	This	stored	energy	may	return	energy	into	the	lattice	when	the	
crossbridges	detach	at	the	start	of	the	subsequent	phase.	In	doing	so,	the	deformed	
cross-bridges	could	assist	antagonistic	muscles.	Prior	studies	have	shown	that	
elastic	energy	storage	is	indeed	crucial	for	meeting	the	high	inertial	power	costs	of	
flight	(3,	4).	If	even	a	portion	of	these	crossbridges	facilitate	elastic	energy	saving	via	
a	temperature	gradient,	they	would	contribute	to	the	overall	energy	savings	I	
locomotion.	Because	temperature	gradients	are	an	inevitable	consequence	of	
internal	energy	generation	and	heat	dissipation	in	both	vertebrates	and	
invertebrates,	this	mechanism	of	energy	storage	could	be	a	general	phenomenon	in	
locomotor	systems	(11,	12).”	
	

What	experimental	approach	could	you	design	to	test	the	hypothesis	that	radial	
energy	storage	in	cross-bridges	contributes	to	locomotion	efficiency?	(1	pt)	

	

	


