Translational and rotational degrees of freedom

Rigid bodies connected at joints with up to 6 degrees of freedom.

Skeletal joints are largely rotational.

What are 1-, 2- and 3-DoF joints? Any translational joints?

What restricts degrees of freedom?

cruciate ligaments constrain knee motions

synovial articular membrane cartilage weeping lubrication coefficient of friction knee joint ~0.003 good ball bearing ~0.02

Rotational motion, torques and energy

angle	heta		[rad]
angular velocity	$rac{d heta}{dt},\omega$	\mathbf{T}^{-1}	$[rad] \cdot s^{-1}$
angular acceleration	$\frac{d^2\theta}{dt^2}, \alpha$	T^{-2}	$[rad] \cdot s^{-2}$
moment of inertia	Ι	ML^{2}	$kg\cdot m^2$
angular momentum	$L, I \cdot \omega$	$\mathrm{ML}^{2}\mathrm{T}^{-1}$	$kg\cdot m^2\cdot s^{-1}$
torque	$T, x \times F$	$\mathrm{ML}^{2}\mathrm{T}^{-2}$	$N\cdot m, kg\cdot m^2\cdot s^{-2}$

Rotational motion, torques and energy

Torque and energy have the same units? Are torque and energy the same thing? No. Rotational motion, torques and energy

Torque is force applied perpendicular to a lever arm.

Work is force applied along a distance.

torque	$T, \ F \times x$	$\mathrm{ML}^{2}\mathrm{T}^{-2}$	$N\cdot m, kg\cdot m^2\cdot s^{-2}$
	Torque and energy have	e the same un	nits?
	Are torque and energy	the same thi	ng?

No.

Types of levers

$$\frac{\Gamma_o}{F_i} = \frac{L_i}{L_o}$$

 $\underline{v_o} \ _ \ \underline{L_o}$

$$v_i = L_i$$

The trade-off between force and speed

Which class of lever are these legs?

Which has a higher speed ratio? mechanical advantage?

What can you infer about the function of these limbs? Which animals might they belong to?

More complex levers: linkages

More complex levers: linkages

Linkages in nature

Cranial kinesis in birds, reptiles, and amphibians.

