Biology 427 Biomechanics

Lecture 6. Everyday stress and strain and the stiffness of biological materials I: terms, definitions and other basics

- •Recap: Loads basic concepts
- •Stress -- the distribution of force over an area
- •Strain -- a dimensionless measure of deformation
- •Stiffness: a measure of how materials respond to loads -the relationship between stress and strain
- •Strength: the stress at breaking

What is the **force** in Gastrocnemius? What is the **stress** in your Achilles tendon? How much does the tendon **deform**? How much energy is imparted into the tendon? How much energy is returned by the tendon? How close is the tendon to rupture (breaking)?

Principles for today

All (biological) materials respond to external forces by deforming.

We seek a way to understand and characterize *material* behavior as separate from **structural** behavior

We will formalize the relationships between force and deformation.

Hooke's Law

The displacement is proportional to the force

What factors influence this relationship?

Material vs. structural properties

stress (σ) = Force/Area

strain (ϵ)= (L - L_o)/L_o $\epsilon_{\tau} = \int dL/L = \ln (L)$ $\lambda = L/L_o$

> Hooke's Law $F = k \Delta L$ Young's modulus (E) measures the stiffness of a material $E = \sigma/\epsilon$

stress (σ) : the distribution of force over an area
strain (ε): a dimensionless measure of length change
stiffness (Ε): the change in stress required for a change in strain (the slope of a stress-strain curve)

Many (most) biological materials are non-linearly elastic

MJ Buehler (2006)

Nature designs tough collagen: Explaining the nanostructure of collagen fibrils PNAS 103:12285-12290

material streng	gth (MPa)	density (kg/m ³) strength/density
arterial wall	2	1000	2000
human cartilage	3	1000	3000
cement	4	2000	2000
cheap aluminum	70	2700	26000
glass	100	2600	39000
human tendon 1	L00	1000	100000
human bone	110	1200	92000
human hair	200	1000	200000**
spider silk	350	1000	350000**
titanium 1	000	4500	222222**
steel wire 3	000	8000	375000**

- *m*= 70 kg
- $g = 9.8 \text{ m/s}^2$
- $L_i = 20 \text{ cm}$
- $L_o = 15 \text{ cm}$
- $L_T = 10 \text{ cm}$
- $Area_T = 1 \text{ cm}^2$
- E = 600 MPa
- $\sigma_{\text{max}} = 100 \text{MPa}$

force on the tendon? stress on the tendon? strain on the tendon?