Biology 427 Biomechanics Lecture 9. Shape and stress: architecture in biology.

- Brief recap of fracture and viscoelasticity.
- Failure and safety factors: many ways to break up
- The flexural stiffness of a structure (EI): an introduction to structural mechanics.
- The deflection of a simple beam -- both stiffness and shape determine deformation.
- A joint effort analyses of femoral mechanics

Creep characteristics of

$$\sigma_{s} = \sigma_{d} = \sigma_{total}$$

$$\varepsilon_{s} + \varepsilon_{d} = \varepsilon_{total}$$

$$\mu d\varepsilon_{d} / dt = \sigma$$

$$\varepsilon_{d} = \sigma t / \mu$$

$$\sigma / E + \sigma t / \mu = \varepsilon_{total}$$

So far: stress, strain, stiffness, strength, toughness, resilience. Linear vs. non-linear, isotropic vs. anisotropic, time-dependent (vs not).

Performance: to what extent are biological materials and structures designed to withstand forces?

Safety factor *: n = σ_{br}/σ_{ex}

	Bones		Tendon
	Tensile Cor	npressive	
Strength (MPa)	172	284	84
Dog jumping	68-80(2-3)	100(2.8)	84(1.0)
Kangaroo hopping	60(3)	90(3.2)	40-80(1-2)
Elephant running	45-69(2.5-4)	57-85(3.3-5)	
Man weight lifting		(1 - 1.7)	
Goose flying		50(6)	

*Alexander, R.McN. 1981. Sci. Prog. Oxf. 67:109-120

But ... there is variation in the materials and loads may be unpredictable (they too may vary). The geometric arrangement matters as well!

0.0004/year human humerus 0.0006/year human femur 0.02/life either 0.07/life viverids 0.4/life gibbons 0.5/life red deer antlers 0.5/life spider webs

Size and shape matter too

Local buckling $\sigma_L = k E t / D (k \sim 0.7)$

Compressive failure

 $\sigma > \sigma_{max}$

Euler buckling $F_E = n \pi^2 E I/L^2$

Size and shape matter too $I = \int y^2 dA$

E I: Flexural stiffness of a structure

I = second moment of area: a measure of how shape affects stress distribution in a structure

Euler buckling $F_E = n \pi^2 E I/L^2$

E I : Flexural stiffness of a structure

$$M = (\sigma/y) \int y^2 dA$$

https://en.wikipedia.org/wiki/List_of_area_moments_of_inertia

Where do you think the tensile stress is greatest?

Where is the most likely zone for failure?

 $\sigma = \mathbf{F} \mathbf{x} \mathbf{y} / \mathbf{I}$

 $I = \pi R^{4}/4$

FIG. 1. (a) Conventions for R, t and K used in text. (b), (c), (d) Sketches of sections of bones of different values of K and R/t. (b) K = 0.35, R/t = 1.5; alligator femur. (c) K = 0.57, R/t = 2.4; camel tibia. (d) K = 0.91, R/t = 11; Pteranodon first phalanx.

Area? Second Moment of Area?

http://www.aps.anl.gov/asd/me/Calculators/ElasticBeam2.html