Biology 427 Biomechanics Lecture 10.

- Brief recap of beams, stress and the second moment of area.
- Flexural stiffness revisited
- The deflection of a simple beam -- both stiffness and shape determine deformation.
- A joint effort analyses of femoral mechanics
- How hollow are bones? How hollow should they be?

E I : Flexural stiffness of a structure

$$M = (\sigma/y) \int y^2 dA$$

Shape	Area	Ι		
h	wh	$\frac{wh^3}{12}$		
r	πr^2	$\frac{\pi r^4}{4}$		
ab	πab	$\frac{\pi a^3 b}{4}$		
r _o	$\pi(r_o^2-r_i^2)$	$rac{\pi(r_o^4-r_i^4)}{4}$		
h b	<u>bh</u> 2	$\frac{bh^3}{36}$		

How does *I* change as we remove material from the inside of the beam? $(r_{inner} = 0.5 r_{outer})$

Shape	Area	I	
h	wh	$\frac{wh^3}{12}$	Eor compositos:
r	πr^2	$\frac{\pi r^4}{4}$	$EI_{T,ini} = EI_1 + EI_2 + \dots$
		*	
a	πab	$\frac{\pi a^3 b}{4}$	For cavities:
r _o			$EI_{Total} = EI_1 + EI_2 + \dots - EI_{cav1} - EI_{cav2} - \dots$
	$\pi(r_o^2-r_i^2)$	$\frac{\pi(r_o^4-r_i^4)}{4}$	
<u>h</u>	<u>bh</u> 2	$\frac{bh^3}{36}$	
https:	://en.wikipe	edia.org/w	viki/List_of_area_moments_of_inertia

What additional arrangement of squares can maximize I? Any examples of I-beams in biology? Where do you think the tensile stress is greatest?

Where is the most likely zone for failure?

$$I = \pi R^4/4$$

How would you estimate *I* for a cilium from a micrograph? Does the central doublet make a big difference?

http://www.aps.anl.gov/asd/me/Calculators/ElasticBeam2.html

Carboniferous Arthropod Gigantism

FIG. 1. (a) Conventions for R, t and K used in text. (b), (c), (d) Sketches of sections of bones of different values of K and R/t. (b) K = 0.35, R/t = 1.5; alligator femur. (c) K = 0.57, R/t = 2.4; camel tibia. (d) K = 0.91, R/t = 11; Pteranodon first phalanx.

You've decided to trade in your endoskeleton for a sleek shiny exoskeleton. Assuming your exoskeleton is bone how thick would it have to be to surround your biceps for the same EI?

k = r/R

Bone	Hare	Fox	Lion	Came	l Buffalo	Swan
femur	0.57	0.63	0.56	0.62	0.54	0.60
humerus	0.55	0.59	0.57	0.66	0.51	0.92