- Biology 427 Biomechanics Lecture 12. Molecular motors
- Recap vibrations
- •Motility at the cellular and sub-cellular level
- Diversity of molecular motors
- •The fundamental problem of converting chemical energy into mechanical energy.
- Converting mechanical energy into motion
- •Myosin the basis of movement with muscle.

How does the motion (x) change as we input a force near resonance? A sample demonstration in Mathematica.

Motility at the cellular and sub cellular level: axonal transport

Processive motors transport cargo

Drew Berry, 2013

Motility at the cellular and sub cellular level: cilia and flagella

Motility at the cellular and sub cellular level: cell division

images from von Dassow et al. Friday Harbor Labs

Motility at the cellular and sub cellular level: muscle

images from von Dassow et al. Friday Harbor Labs

One myosin to stand in for all

Motility at the cellular and sub cellular level: three motor proteins use the energy of ATP hydrolysis

Kinesin: mostly + directed Dynein: mostly - directed Motility at the cellular and sub cellular level: three motor proteins use the energy of ATP hydrolysis

ATP ~ 0.7 nm ADP ~ 0.7 nm P ~ 0.1 nm 5.46 10⁴ J/mol

9 10⁻²⁰ J

Motility at the cellular and sub cellular level: measure mechanics and kinematics at this tiny scale

Cover Glass

Motility at the cellular and sub cellular level: measure mechanics and kinematics at this tiny scale

Some images adapted from Viegal et al, 1998, 1999 and Howard, 2001

Motility at the cellular and sub cellular level: three motor proteins use the energy of ATP hydrolysis

If the step length of a motor protein is 8 nm and it has all of the energy of ATP hydrolysis available, how much force can it generate?

