Biology 427 Biomechanics
Lecture 14. Muscle and energy

-Comments about projects

-Recap force: depends on cross sectional area, time, sarcomere length,
and contraction velocity

*In normal movement, neither isometric nor isotonic conditions apply
(length and force vary in time)

- The work loop method — how is mechanical energy managed in real
systems?

 Timing and activation

-Some final matters on muscle — it is isovolumetric. What might this
mean?



Biology 427 Biomechanics
Course projects

« 20 points
* Any topic that involves mechanics and biology

- It will be in the form of a poster that you will submit online (poster guidelines
will be posted)

* Any pair within one lab

* Analytic/experimental work is excellent

 Will use lab during scheduled hours for projects

- Assistance with Mathematica (via TLD) can be had

* Poster template and guidelines Week of Nov 7

- Project proposals due in lab week of Nov 14

*Labs will be open Tues week of Nov 21 for joint work
*Week of Nov 28 is a half lab and half poster prep time.

- Week of Dec 5 poster presentations via power point slides.



Tension

Force is proportional to the cross-
sectional area Power =force x velocity
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Force is proportional to the cross-

sectional area Power =force x velocity
and timing and length and velocity o bTo—av
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Isometric versus isotonic contractions

(a) Isotonic contraction
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In most movement activities, muscle
contraction is neither purely isometric
nor isotonic. In class demo...
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Work loops:

Stimulation



In most movement activities, muscle
contraction is neither purely isometric
nor isotonic.

Work loops:

S"nmUIatlon ......................................

Plot the force as a function of length for one cycle of
length change



Cyclical contractions - useful transform

Length A | 20 mN

Force 0-1 mm
Work output Work input Net work per cycle
during shortening to lengthen
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So we can see how muscle is a motor...
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Dickinson et al, 2000, Science



... or a brake, spring, or strut
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Even a single muscle switches functions
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An aside, measuring muscle force in vivo

Tendon

Biewener et al, 1988



Ca?* pumping and diffusion limits

Impulses create
\ twitches which can sum
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Asynchronous muscle gets
around that limit, but only
near tuned frequencies

5mV

But pumping Ca2+
takes time, energy



Asynch beats the SR limit on speed
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Muscle cells are constant volume!

H: As muscle shortens, lattice spacing should increase
(inversely with the square root of length).

Yes: Cross-bridges would need to reach a greater distance for
actin binding? No: Fluid would move out of the lattice?
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Available now. LINEAR MOTOR.*

Rugged and dependable: design optimized by world-wide field testing over an extended
period.

All models offer the economy of "fuel cell" type energy conversion and will run on a wide
range of commonly available fuels.

Low stand-by power, but can be switched within msecs to as much as 1 kW/kg (peak, dry).

Modular construction, and wide range of available subunits, permit tailor-made solutions to
otherwise intractable mechanical problems

Choice of two control systems:

(1) Externally triggered mode. Versatile, general-purpose units. Digitally controlled by
picojoule pulses. Despite low input energy level, very high signal-to-noise ratio. Energy
amplification 10° approx. Mechanical characteristics: (1 cm modules) max. speed
optional between 0.1 and 100 mm/sec. Stress generated: 2 to 5 x 10° N/m?2.

(2) Autonomous mode with integral oscillators. Especially suitable for pumping

applications. Modules available with frequency and mechanical impedance appropriate
for:

(a) Solids and slurries (0.01-1.0 Hz)

(b) Liquids (0.5-5 Hz): lifetime 2.6 x 10° operations (typical) 3.6 x 10° (maximum)
independent of frequency

(c) Gasses (50-1,000 Hz)

Many options: e.g., built-in servo (length and velocity) where fine control is required. Direct
piping of oxygen. Thermal generation, etc.

Good to eat.



