Biology 427 Biomechanics Lecture 16. Basic fluid dynamics II: continuity and Bernoulli's principle.

- Recap definition of a fluid and Newton's law of viscosity and a coevolutionary story.
- •Conservation of mass and continuity
- •An application of continuity
- Conservation of energy and Bernoulli's principle
- Applications of Bernoulli's principle

2 rules govern flow

•Newton's Law of viscosity

 $\tau = \mu \ du/dy = \nu \ d(\rho \ u)/dy$ •No slip condition (fluid adheres to solid surfaces)

doping, dehydration

- **2 more rules govern flow**-- and applications of those rules to biology:
- •Conservation of mass -- the Principle of
- Continuity
- •Conservation of energy -- Bernoulli's Principle

Conservation of mass -- the "principle of continuity": rate of mass flow in must equal rate of mass flow out.

Volume_{out}/time u_{out} A_{out}

Conservation of mass -- the "principle of continuity": rate of mass flow in must equal rate of mass flow out.

$$\Sigma u_{in} A_{in} = \Sigma u_{out} A_{out}$$

How many capillaries do we have?

Aorta

Area 1 cm² Blood velocity 10 cm/s

Capillary

Area 2 10⁻⁷ cm² Blood velocity 0.1 cm/s

3 assumptions: flow is steady (no acceleration at a point in space, du/dt = 0fluid is incompressible (ρ = constant) flow is "inviscid" (μ = 0)

Along a streamline (PE + KE + W)/m = constant

Conservation of Energy: what is the relationship between fluid motion and pressure? $\frac{(P_2 - P_1)/\rho + (u_2^2 - u_1^2)/2 = 0}{(P_2 - P_1)/\rho + (u_2^2 - u_1^2)/2 = 0}$

Why is fluid faster over the top?

Conservation of Energy: what is the relationship between fluid motion and pressure? $(P_2 - P_{11})/\rho + (u_2^2 - u_1^2)/2 = 0$

Conservation of Energy: what is the relationship between fluid motion and pressure? $(P_2 - P_{11})/\rho + (u_2^2 - u_1^2)/2 = 0$

Conservation of Energy: what is the relationship between fluid motion and pressure? $\frac{(P_2 - P_1)/\rho + (u_2^2 - u_1^2)/2 = 0}{(P_2 - P_1)/\rho + (u_2^2 - u_1^2)/2 = 0}$

$$|(P_2 - P_{1})/\rho + (u_2^2 - u_1^2)/2 = 0$$

Is the direction drawn here correct?

http://www.asknature.org/strategy/e27b89ebcdec8c9b5b2cd9ac84b8f8a0

Aorta Area 1 cm² Blood velocity 10 cm/s Capillary Area 2 10⁻⁷ cm² Blood velocity 0.1 cm/s

How many capillaries?

Worksheet $u_1 = 0.2 \text{ m/s}; u_2 = 3 \text{ m/s}$ What is $(P_2 - P_1)$?