Biology 427 Posters Due Mon Dec 5, 5 pm Lecture 26. Life at Low Reynolds Numbers II

- Low Reynolds numbers recap
- •Flagellar mechanisms
- Ciliary mechanisms (challenges)
- •The mechanics of the cilium/flagellum

Life at Low Reynolds numbers (Re <<1)

Phenomenological issues:

- disturbances are manifest over huge relative distances.
 (boundaries are all important)(to swim is to scream)
- inertia is negligible
- flow is reversible (flow equations are linear)
- shape matters considerably less (no wakes)

Mymarid wasps: paddles versus rakes

http://www.cco.caltech.edu/~brokawc/Demo1/BeadExpt.html

Copyright © 2006 Nature Publishing Group Nature Reviews | Microbiology Bacterial flagella operate like a corkscrew, driven by a proton gradient (high H⁺ outside).

recent history & movie of a bacterial flagellum.

https://www.youtube.com/ watch?v=v1NnMmw8v80

Clip from Nova https://www.youtube.com/ watch?v=a_5FToP_mMY

How is ciliary and flagellar bending controlled?

$$D = \frac{4\pi\mu U\mu l}{\ln\left(\frac{l}{a}\right) + 0.193}$$
 Cross flow

$$D = \frac{2\pi\mu U\mu l}{\ln\left(\frac{l}{a}\right) - 0.897}$$
 Longitudinal flow

Wave Propagation

Two questions:

 What are the cellular

mechanisms that generate force?

 What are the fluid dynamic mechanisms that propel the animal?

Assume *l* >> *a* so that the normal drag is twice the tangential drag. Draw the drag forces on the two sections of this flagellum and decompose those into thrust and lateral forces.

$$D = \frac{4\pi\mu U\mu l}{\ln\left(\frac{l}{a}\right) + 0.193}$$

$$D = \frac{2\pi\mu U\mu l}{\ln\left(\frac{l}{a}\right) - 0.897}$$

Cilia — where are they deployed and how do they work?

https://www.youtube.com/watch?v=pUIBABE5b6A

https://www.youtube.com/watch?v=j3CuqRDGPmU

Ciliary metachronv and the envelope model (Brennan, Wu

Mucociliary transport and the shear layer model (Winet)

Mucociliary transport and the shear layer model (Winet)

Assume l >> a so that the normal drag is twice the tangential drag. Draw the drag forces on the two sections of this flagellum and decompose those into thrust and lateral forces.

perpendicularly to an incident flow is twice that of a cylinder aligned At low Reynolds number, the drag on a cylinder oriented with the flow. Draw a ciliary power stroke and a recovery stroke Exercise: below.

