Klotho and bone - references

Kuro-o M. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 1997;390(6655):45-51.

Kawaguchi H. Independent impairment of osteoblast and osteoclast differentiation in klotho mouse exhibiting low-turnover osteopenia. J Clin Invest 1999;104(3):229-37.

Yamashita T. High-resolution micro-computed tomography analyses of the abnormal trabecular bone structures in klotho gene mutant mice. J Endocrinol 2000;164(2):239-45.

Koh N. Severely reduced production of klotho in human chronic renal failure kidney. Biochem Biophys Res Commun 2001;280(4):1015-20.

Yamashita T. Klotho-deficient mice are resistant to bone loss induced by unloading due to sciatic neurectomy. J Endocrinol 2001;168(2):347-51.

Arking DE. Association of human aging with a functional variant of klotho. Proc Natl Acad Sci U S A 2002;99(2):856-61.

Kawano K. Klotho gene polymorphisms associated with bone density of aged postmenopausal women. J Bone Miner Res 2002;17(10):1744-51.

Ogata N. Association of klotho gene polymorphism with bone density and spondylosis of the lumbar spine in postmenopausal women. Bone 2002;31(1):37-42.

Yamashita T. Double mutations in klotho and osteoprotegerin gene loci rescued osteopetrotic phenotype. Endocrinology 2002;143(12):4711-7.

Yoshida T. Mediation of unusually high concentrations of 1,25-dihydroxyvitamin D in homozygous klotho mutant mice by increased expression of renal 1alpha-hydroxylase gene. Endocrinology 2002;143(2):683-9.

Arking DE. KLOTHO allele status and the risk of early-onset occult coronary artery disease. Am J Hum Genet 2003;72(5):1154-61.

Narumiya H. HMG-CoA reductase inhibitors up-regulate anti-aging klotho mRNA via RhoA inactivation in IMCD3 cells. Cardiovasc Res 2004;64(2):331-6.

Chang Q. The beta-glucuronidase klotho hydrolyzes and activates the TRPV5 channel. Science 2005;310(5747):490-3.

Kurosu H. Suppression of aging in mice by the hormone Klotho. Science 2005;309(5742):1829-33.

Mullin BH. Klotho gene polymorphisms are associated with osteocalcin levels but not bone density of aged postmenopausal women. Calcif Tissue Int 2005;77(3):145-51.

Negri AL. The klotho gene: a gene predominantly expressed in the kidney is a fundamental regulator of aging and calcium/phosphorus metabolism. J Nephrol 2005;18(6):654-8.

Suzuki H. Histological evidence of the altered distribution of osteocytes and bone matrix synthesis in klotho-deficient mice. Arch Histol Cytol 2005;68(5):371-81.

Yamada Y. Association of polymorphisms of the androgen receptor and klotho genes with bone mineral density in Japanese women. J Mol Med 2005;83(1):50-7.

Chihara Y. Klotho protein promotes adipocyte differentiation. Endocrinology 2006;147(8):3835-42.

Kuro-o M. Klotho as a regulator of fibroblast growth factor signaling and phosphate/calcium metabolism. Curr Opin Nephrol Hypertens 2006;15(4):437-41.

Kurosu H. Regulation of fibroblast growth factor-23 signaling by klotho. J Biol Chem 2006;281(10):6120-3.

Kuwahara N. HMG-CoA reductase inhibition improves anti-aging klotho protein expression and arteriosclerosis in rats with chronic inhibition of nitric oxide synthesis. Int J Cardiol 2007.

Urakawa I. Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature 2006;444(7120):770-4.

Ichikawa S. A homozygous missense mutation in human KLOTHO causes severe tumoral calcinosis. J Clin Invest 2007;117(9):2684-91.


Prie D. Recent findings in phosphate homeostasis. Curr Opin Nephrol Hypertens 2005;14(4):318-24.

Rendina D. Fibroblast growth factor 23 is increased in calcium nephrolithiasis with hypophosphatemia and renal phosphate leak. J Clin Endocrinol Metab 2006;91(3):959-63.

Rendina D. Fibroblast growth factor 23 is increased in calcium nephrolithiasis with hypophosphatemia and renal phosphate leak. J Clin Endocrinol Metab 2006;91(3):959-63.

Stewart I. Elevated serum FGF23 concentrations in plasma cell dyscrasias. Bone 2006.

Razzaque MS. Premature aging-like phenotype in fibroblast growth factor 23 null mice is a vitamin D-mediated process. Faseb J 2006.

Saito H. Human fibroblast growth factor-23 mutants suppress Na+-dependent phosphate co-transport activity and 1alpha,25-dihydroxyvitamin D3 production. J Biol Chem 2003;278(4):2206-11.

Bai X. Transgenic mice overexpressing human fibroblast growth factor 23 (R176Q) delineate a putative role for parathyroid hormone in renal phosphate wasting disorders. Endocrinology 2004;145(11):5269-79.

Larsson T. Transgenic mice expressing fibroblast growth factor 23 under the control of the alpha1(I) collagen promoter exhibit growth retardation, osteomalacia, and disturbed phosphate homeostasis. Endocrinology 2004;145(7):3087-94.

Benet-Pages A. An FGF23 missense mutation causes familial tumoral calcinosis with hyperphosphatemia. Hum Mol Genet 2005;14(3):385-90.

Chefetz I. A novel homozygous missense mutation in FGF23 causes Familial Tumoral Calcinosis associated with disseminated visceral calcification. Hum Genet 2005;118(2):261-6.

Fukagawa M. FGF23: its role in renal bone disease. Pediatr Nephrol 2006;21(12):1802-6.

Ben-Dov IZ. The parathyroid is a target organ for FGF23 in rats. J Clin Invest 2007.

Krajisnik T. Fibroblast growth factor-23 regulates parathyroid hormone and 1alpha-hydroxylase expression in cultured bovine parathyroid cells. J Endocrinol 2007;195(1):125-31.

Westerberg PA. Regulation of fibroblast growth factor-23 in chronic kidney disease. Nephrol Dial Transplant 2007;22(11):3202-7.

Yamashita H. Fibroblast growth factor-23 (FGF23) in patients with transient hypoparathyroidism: its important role in serum phosphate regulation. Endocr J 2007;54(3):465-70.


Topaz O. Mutations in GALNT3, encoding a protein involved in O-linked glycosylation, cause familial tumoral calcinosis. Nat Genet 2004;36(6):579-81.

Frishberg Y. Identification of a recurrent mutation in GALNT3 demonstrates that hyperostosis-hyperphosphatemia syndrome and familial tumoral calcinosis are allelic disorders. J Mol Med 2005;83(1):33-8.

Ichikawa S. Tumoral calcinosis presenting with eyelid calcifications due to novel missense mutations in the glycosyl transferase domain of the GALNT3 gene. J Clin Endocrinol Metab 2006;91(11):4472-5.

Specktor P. Hyperphosphatemic familial tumoral calcinosis caused by a mutation in GALNT3 in a European kindred. J Hum Genet 2006;51(5):487-90.

Barbieri AM. Two novel nonsense mutations in GALNT3 gene are responsible for familial tumoral calcinosis. J Hum Genet 2007;52(5):464-8.

Frishberg Y. Hyperostosis-hyperphosphatemia syndrome: a congenital disorder of O-glycosylation associated with augmented processing of fibroblast growth factor 23. J Bone Miner Res 2007;22(2):235-42.

Garringer HJ. Two novel GALNT3 mutations in familial tumoral calcinosis. Am J Med Genet A 2007;143(20):2390-6.

Ichikawa S. Novel GALNT3 mutations causing hyperostosis-hyperphosphatemia syndrome result in low intact fibroblast growth factor 23 concentrations. J Clin Endocrinol Metab 2007;92(5):1943-7.

Updated 11/29/07