Homework 2: Geometric Design & Pavement Design

Textbook Assignment

Number	<u>Points</u>	Answer
3.2	10	(high pt., sta. = 340+58, el. = 1318.15 ft; PVC, sta = 337+50, el. = 1312 ft; PVT sta = 342+50, el. = 1315.75 ft)
3.7	10	8.9 ft
3.8	10	The curve is adequate for the conditions. The criteria one could use are $K = 206.5$ (greater than required $K = 151$) or minimum $L = 583.2$ ft (less than actual $L = 800$)
3.25	10	PC sta = 2694+90, PT sta = 2704+68, safe speed = 59.26 mph
3.27	10	$e = 0.413, D = 5.73, L = 523.6 \text{ ft}, STA_{PC} = 1122 + 42.05, STA_{PT} = 1127 + 65.65$
3.31	20	You figure this one out

Additional Required Work (30 points)

Using the 1993 AASHTO equation and common assumptions, how many ESALs should the Interstate 5 rigid pavement under the 45th St. overpass in the southbound direction support? How many has it supported already?

Note: you must determine it's structure and other information from http://wspms.ce.washington.edu/. This will require you to spend a bit of time figuring out how this application works. There are multiple ways to answer this question.

Instructor: