Intelligent Transportation Systems (ITS)

Outline

- Need for traffic solutions
- Improving technology
 - Improved wireless networks
 - Low energy requirements
 - Improved management systems
 - Increased appetite for technology

Road Use Growth

From the Bureau of Transportation Statistics, National Transportation Statistics 2003

Changes in Congested Peak-Period Travel

Problems Caused by Congestion

- Increased...
 - Travel time
 - Travel cost
 - Air pollution
 - Accident risk

How Much Capacity Is There?

Remaining Effective Capacity

Special events and disasters further restrict capacity

Weather: Snow, fog, rain can all restrict capacity

Work zones: major cost is delay imparted to the traveler

Incidents: more delay is caused by incidents than by recurring peak period congestion.

Options

Construct new roads

- Covered in geometric design
- Not likely to happen on a large scale
- Reduce Traffic
 - Travel demand management
 - Alternative transportation
- Increase existing infrastructure capacity
 - Often exploits the intelligent transportation systems (ITS)

All of these are required, and there will (probably) still be congestion

Induced demand

Option 1: Construction

Highway Construction Cost Sampling

			Cost per
Project	Total Cost	Lane-Miles	Lane-Mile
Route 3, North Boston	\$395.0 million	42	\$9.4 million
I-4 Tampa to Orlando	\$403.0 million	73	\$5.5 million
I-5 Oregon	\$30.0 million	5.16	\$5.8 million
US 26 Sunset Hwy. Oregon	\$10.6 million	2.24	\$4.8 million
US 12 near Walla Walla River	\$36.4 million	25	\$1.5 million
US 101 on Olympic Peninsula	\$1.8 million	0.8	\$2.2 million

<u>General Conclusion</u> Highways cost \$1 to \$10 million per lane-mile to build

Option 2: Reduce Traffic or Spread Demand

- Make the trip using another mode
 - Extra capacity
- Don't make the trip
 - Pricing
 - Controls
- Make the trip at a different time
 - Pricing
 - Controls

Option 3: Increase Existing Infrastructure Capacity

- An alternative to expensive new highway construction is the implementation of strategies that promote more efficient utilization of transportation infrastructures.
- Simple:
 - More people per vehicle (carpool, bus)
 - Smaller vehicles (motorcycles)
 - Narrow lanes

Option 3: Increase Existing Infrastructure Capacity

• More complex:

- Vehicle automation
- Variable speed limits
- Variable use facilities
- Traffic monitoring
- Ramp meters
- Many rely on Intelligent Transportation Systems (ITS), which aims to reduce travel time, ease delay and congestion, improve safety, and reduce pollutant emissions