

Fundamentals of Queuing Theory

• Microscopic traffic flow

- Different analysis than theory of traffic flow
- Intervals between vehicles is important
- Rate of arrivals is important

Queuing Terminology – think McDonalds

- Customers requiring service are generated over time by an *input source*
- These customers enter the *queuing* system and join a *queue*
- At certain times, a member of the queue is selected for service by some rule known as the *queue discipline*.
- The required service is then performed for the customer by the service mechanism, after which the customer leaves the queuing system.

Non-traffic queuing examples

- Single channel/server
 - Wendy's, ATM
 - Fast-food drive through
- Multiple channel/server (one arrival channel)
 - Bank teller
 - Airport check-in counter
 - Burger King
- Multiple channel/server (multiple arrival channels)
 - Grocery/retail store (Publix, Lowe's, Wal-Mart)
 - McDonald's

Demand Population/ Arrival Pattern

- Equal time headways
 - Based on uniform distribution
- Exponentially distributed time headways
 - Based on Poisson distribution

Queue Disciplines

- Refers to the order in which members of the queue are selected for service
 - FIFO first-in first-out
 - First customer to arrive is first to depart
 - LIFO last-in first-out
 - Last customer into queue is first to leave
 - SIRO service in random order
 - Priority
 - Customers get served in order of priority (highest to lowest)

Service Mechanism/ Departure Pattern

- Time elapsed from start to finish of service
- Again, potential patterns:
 - Equal time headways
 - Based on uniform distribution
 - Exponentially distributed time headways
 - Based on Poisson distribution

Number of Servers/Departure Channels

Single channel/server

One server for all queued customers

• Multiple channel/server

 Finite number of "identical" servers operating in a parallel configuration

• Infinite-server

- A server for every customer
 - Don't we wish!

Examples of different queue disciplines (non-traffic)

- FIFO
 - Bank teller line, Wendy's
- LIFO
 - Elevator
 - Cafeteria trays

Examples of different queue disciplines (non-traffic)

- Priority
 - Sinking ship women and children first
 - Hospital waiting room most injured first
 - Getting bumped by "more important" people (fancy restaurant)

Traffic Queuing Examples

- Left-turn bay length
- Number of approach lanes at a signal controlled intersection
- Number of toll plaza booths
- Number of border crossing booths
- Narrow bridge

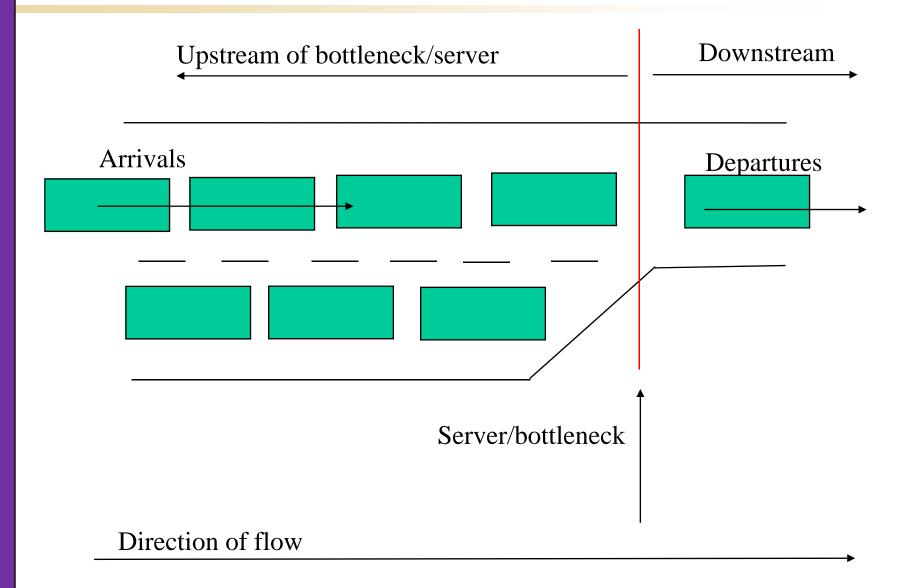
Examples of different queue disciplines (traffic)

- FIFO
 - Traffic signal
- LIFO
 - Elevator

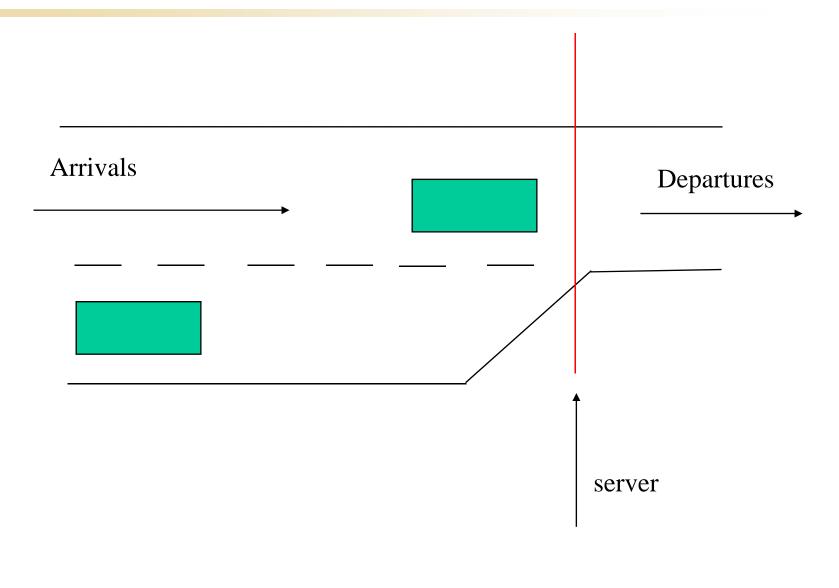
Parallel, Serial Queue Systems

• Parallel

- Toll booths
- Retail store checkout
- Some fast food restaurants
- Serial
 - Opening night of a movie
 - Ticket line, line to get into theater, line for snacks


Queuing Model Notation

- Arrival pattern/departure pattern/# of departure channels
- alpha/alpha / #
- D for uniform, deterministic
- M for exponential, stochastic
- e.g., D/D/1, M/M/2


Statistics of Interest

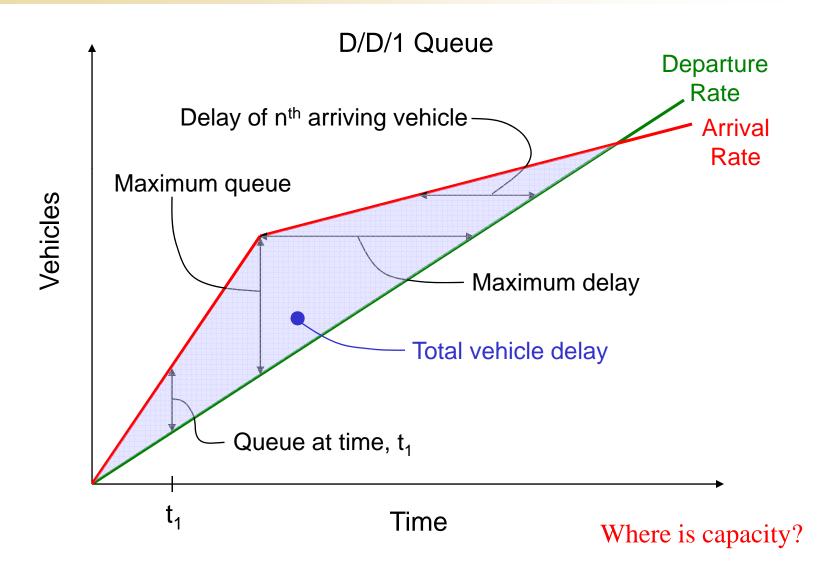
- Average queue length
- Average number in system
- Maximum queue length
- Average waiting time in queue
- Average time in system

Activated

Not Activated

Flow Analysis

Bottleneck active


- Service rate is capacity
- Downstream flow is determined by bottleneck service rate
- Arrival rate > departure rate
- Queue present

Flow Analysis

Bottle neck not active

- Arrival rate < departure rate</p>
- No queue present
- Service rate = arrival rate
- Downstream flow equals upstream flow

Queue Analysis – Graphical

