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Poisson DistributionPoisson Distribution

• Good for modeling random eventsGood for modeling random events
• Discrete values
• Only one parameterOnly one parameter

( ) ( ) etP
tn λλ −

( ) ( )
!n

nP =

P(n) = probability of exactly n vehicles arriving over time t
n = number of vehicles arriving over time t
λ = average arrival rate and variance
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t = duration of time over which vehicles are counted



Poisson distributionPoisson distribution
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Different means
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Example: Arrival IntervalsExample: Arrival Intervals
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Poisson IdeasPoisson Ideas

• Probability of exactly 4 vehicles arriving
– P(n=4)

• Probability of less than 4 vehicles arriving
– P(n<4) =

• Probability of 4 or more vehicles arriving
– P(n≥4) =P(n≥4) 

• Probability of no vehicles arriving
P( 0)
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– P(n=0) =



Poisson Distribution ExamplePoisson Distribution Example

Vehicle arrivals at the Olympic National Park main gate are assumed 
Poisson distributed with an average arrival rate of 1 vehicle every 5 
minutes.  What is the probability of the following:

1 Exactly 2 vehicles arrive in a 15 minute interval?1. Exactly 2 vehicles arrive in a 15 minute interval?
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Example CalculationsExample Calculations

Less than 2 vehicles arrive in a 15 minute interval?Less than 2 vehicles arrive in a 15 minute interval?
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More than 2 vehicles arrive in a 15 minute interval?More than 2 vehicles arrive in a 15 minute interval?
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Queue times depend on variabilityQueue times depend on variability
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Queue Analysis Numerical
Steady state assumption

Queue Analysis – Numerical

μ
λρ = 0.1<ρ

• M/D/1
– Average length of queue ( )ρ
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Queue Analysis NumericalQueue Analysis – Numerical

μ
λρ = 0.1<ρ

• D/D/1
– Average length of queue

– Average time waiting in queue

– Average time spent in system
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Queue Analysis NumericalQueue Analysis – Numerical

μ
λρ = 0.1<Nρ

• M/M/N
– Average length of queue
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ρ 1+Q
– Average time waiting in queue
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– Average time spent in system
λ
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λ = arrival rate (all traffic), μ = departure rate (one 
server), ρ=traffic intensity, N=departure channels, 
n=vehicles



M/M/N More Stuff λρ =M/M/N – More Stuff

– Probability of having no vehicles in system

μ
ρ =

0.1<Nρ
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– Probability of having n vehicles in the system
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λ = arrival rate μ = departure rate  ρ=traffic intensity



ExampleExample

You are entering Bank of America Arena at Hec Edmunson Pavilion to g
watch a basketball game.  There is only one ticket line to purchase 
tickets.  Each ticket purchase takes an average of 18 seconds. The 
average arrival rate is 3 persons/minute.  

Find the average length of queue and average waiting time in queue 
assuming M/M/1 queuing. 
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ExampleExample

You are now in line to get into the Arena.  There are 3 operating g p g
turnstiles with one ticket-taker each.  On average it takes 3 seconds 
for a ticket-taker to process your ticket and allow entry. The average 
arrival rate is 40 persons/minute.  

Find the average length of queue,  average waiting time in queue 
assuming M/M/N queuing. 
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Example Example 

You are now inside the Arena.  They are passing out Harry the Husky y p g y y
doggy bags as a free giveaway.  There is only one person passing 
these out and a line has formed behind her.  It takes her exactly 6 
seconds to hand out a doggy bag and the arrival rate averages 
9 people/minute.

Find the average length of queue,  average waiting time in queue, and 
average time spent in the system assuming M/D/1 queuing.average time spent in the system assuming M/D/1 queuing.
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