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Trip Generation

• Relates the number of trips being produced from 
a zone or site by time period to the land use and 
demographic characteristics found at that 
location. 

• Assumptions:
– Trip-making is a function of land use

– Trips are made for specific purposes (work, recreation)

– Different trip types are made at different times of the day

– Travelers have options available to them

– Trips are made to minimize inconvenience

– System modeling is based on Traffic Analysis Zones 
and networks

• Poisson model often used
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Trip Generation

• Trip productions and attractions are 

computed for each zone by land use

• Trip Purposes

– HBW – Home based work trip

– HBNW – Home based nonwork trip

– NHB – Non-home based trip

• Usually computed using trip generation 

rates estimated through empirical data
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Trip Generation

TAZ (4)

P=26,268

A=17,740

Suburbs

TAZ (5)

P=33,255

A=18,190

Suburbs

TAZ (2)

P=14,498

A=16,799

City

TAZ (3)

P=13,461

A=19,774

City

TAZ (5)

P=8,980

A=23,696

CBD

P = trips produced, A = trips attracted

An example trip generation map:
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Trip Generation

• Purpose

– Predict how many trips will be made

– Predict when a trip will be made

• Approach

– Aggregate decision-making units (households 

or companies)

– Categorized trip types

– Aggregate trip times (e.g., AM, PM, rush hour)

– Generate Model
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Truck Trip Generation

• Use employment to estimate truck trips for a variety of 

landuses

• Any facility generates the same number of trips per metric

• Trips are estimated separately for light, medium, and heavy 

duty trucks

• For marine ports trips are often generated using ship 

arrivals or terminal acres

• For warehousing, trips are generated using square footage 

or employees

– Range from .02 to .5 trips per day per 1000 square feet

– Per employee these range from 0.3 to 0.7 trips per day 

– Estimated based on empirical observation

• Tonnage is often used instead of trips
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Motivations for Making Trips

• Lifestyle

– Residential choice

– Work choice

– Recreational choice

– Kids, marriage

– Money

• Life stage

• Technology
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Trip Generation Models

• Linear (simple)

– Number of trips is a function of user 

characteristics

– Estimate parameters through least squares

nnxxxT  ...22110 

1 if married, 0 if not married
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Estimate a day of the week model
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Trip Generation Models

• Poisson

– gives the average number of daily trips

– can also calculate the probability of making X 

number of trips in a day

nni xxx  ...ln 22110 

  







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Poisson Distribution

• Count distribution

– Uses discrete values

– Different than a continuous distribution

   
!n

et
nP

tn  



P(n) = probability of exactly n trips being generated over time t

n = number of trips generated over time t

λ = average number of trips over time, t

t = duration of time over which trips are counted (1 day is typical)
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Poisson Ideas

• Probability of exactly 4 trips being generated

– P(n=4)

• Probability of less than 4 trips generated

– P(n<4) = P(0) + P(1) + P(2) + P(3)

• Probability of 4 or more trips generated

– P(n≥4) = 1 – P(n<4) = 1 – (P(0) + P(1) + P(2) + P(3))

• Amount of time between successive trips

      t
t

e
et

thPP 
 




!0

0
0
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Poisson Distribution Example

Trip generation from my house is assumed Poisson distributed with an 

average trip generation per day of 2.8 trips.  What is the probability of 

the following:

1. Exactly 2 trips in a day?

2. Less than 2 trips in a day?

3. More than 2 trips in a day?

 
   

!

trips/day8.2
trips/day8.2

n

et
nP

tn 



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Example Graph
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Example: Time Between Trips
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Variable Coefficient Value Product

Constant 0 1 0

Education (undergraduate degree or higher) 0.15 1 0.15

Income 0.00002 45,000 0.9

Whether or not individual owns an SUV 0.1 1 0.1

Whether or not individual owns a sports car 0.05 0 0

Whether or not individual owns a van 0.1 1 0.1

Whether or not individual owns a sedan 0.08 0 0

Whether or not individual uses a bicycle to work 0.02 0 0

Whether or not individual uses the bus to work all the time -0.12 0 0

Number of autos owned in the last ten years 0.06 6 0.36

Gender (female) -0.15 0 0

Age -0.025 40 -1

Internet connection at home -0.06 1 -0.06

Married -0.12 1 -0.12

Number of kids 0.03 2 0.06

Sum = 0.49

λi = 1.632 trips/day
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Example
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Recreational or pleasure trips measured by 

λi (Poisson model):
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Example

• Probability of exactly “n” trips using the Poisson model:

• Cumulative probability 

– Probability of one trip or less: P(0) + P(1) = 0.52

– Probability of at least two trips: 1 – (P(0) + P(1)) = 0.48

• Confidence level

– We are 52% confident that no more than one recreational or 
pleasure trip will be made by the average individual in a day
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