### **Engineered Wood Products**



# Comparative Life Cycle Assessment:

Glue-Laminated Timber vs. Laminated Veneer Lumber

By Jeralee Anderson March 12, 2008

## Background

- Structural engineers like EWP
- Longer spans
- Better properties
- "Renewable" material
- Glulams, LVLs and PSLs common types
- Economical?





### Background

- Engineered for performance
  - Creative use of lower grade woods/scrap
  - Organic resins bond wood together
  - Complicated processes
  - Common in residential & commercial
- Concerns
  - Environmentally better than real wood?
  - Global warming?
  - Formaldahyde? VOCs?

#### Literature Review

#### CORRIM Phase I

 Life Cycle Environmental Performance of Renewable Building Materials in the Context of Residential Construction, June 2005

#### Other

- 2002 Norway LCC/LCA Study for Glulams
- AP-42 Chapter 10: Wood Products Industry
- Canadian Wood Council (CWC)
- Western Wood Products Association (WWPA)

### **Environmental Aspects**

- Resource Consumption
  - Fossil-fuel use (nonrenewables)
  - Biomass/Forestry (renewables)
  - Water use
- Energy Use
- Water Emissions
  - Manufacture of chemicals
  - Fertilizer
  - Not considered!

- Air Emissions
  - Global warming
  - Smog
  - Acidification
  - Human health
- Solid Waste
  - Forestry waste
  - Manufacturing waste
  - Construction & demolition waste
  - Recycling?
  - Not considered!

#### **Process Alternatives**

- Renewable Energy
  - More on-site biomass?
  - Hydro
- Chemical Processes
  - Inorganic resins?
- Fuels
  - Biodiesel (transport and manufacture)
- FSC Certification?





#### Functional Unit

- Nominal 4x12 EWP
- 15 foot span
- Indoor residential application
- 75-year design life
- 541 plf design load



#### Reference Flows

- Study data collected was allocated by mass and outputs volume units
- Easier to translate volume into engineering practice

| Demand Vectors, f <sup>T</sup>        | Unit       | Total Flow |
|---------------------------------------|------------|------------|
| 3"x12"x15'0" Douglas Fir 26F-E/DF1M1  | ft3/glulam | 3.75       |
| 3.5"x11.875"x15'0" 1.8E Microllam LVL | ft3/LVL    | 4.33       |

#### System Boundary



#### Allocation

- Mass allocated, converted to volume (use and demolition)
- Percentage of wood products in residence
- Impact Categories
  - Air Emissions Only
  - Forest to landfill life cycle

#### Data

- CORRIM & GREET
- UWME Quality Scores

#### Cutoff

- Lubricants
- Equipment & machinery

#### Assumptions

- Kerosene = No. 2 Diesel = Distillate Fuel Oil
- Stationary grid electricity

#### Limitations

- Resins & lubricants
- Non-local residential model

- Unit Process Categories
  - Raw materials & biomass
  - Resin production
  - EWP production
  - Transport (empty backhaul)
  - Construction
    - Design-life implications
  - Demolition and Disposal
- 39 Unit Processes

Glulam Manufacturing Process (Canadian Wood Council)



LVL Manufacturing Process (Canadian Wood Council)



- 39 Technosphere Flows 39 to A Matrix (39x39)
- 17 Co-Products (not considered)
- 82 Environmental Flows 40 to B Matrix (40x39)



#### Calculations in MATLab

| Scaling Matrix (s Matrix)                             | Glulam   | LVL      |
|-------------------------------------------------------|----------|----------|
| PNW Nitrogen Fertilizer Production                    | 1.84E-08 | 1.14E-08 |
| PNW Phosphorous Fertilizer Production                 | 3.16E-09 | 1.96E-09 |
| Lubricant Production (Hollow Process)                 | 3.61E-05 | 2.30E-05 |
| PNW Greenhouse Seedling Production                    | 5.61E-07 | 3.48E-07 |
| PNW Harvest Acres - High Intensity Management         | 1.04E-07 | 2.26E-07 |
| PNW Harvest Acres - Low Intensity Management          | 6.91E-07 | 1.23E-07 |
| PNW Harvest Acres - Medium Intensity<br>Management    | 6.07E-07 | 3.77E-07 |
| PNW Reforested Acres - High Intensity<br>Management   | 1.04E-07 | 6.46E-08 |
| PNW Reforested Acres - Low Intensity<br>Management    | 6.91E-07 | 4.29E-07 |
| PNW Reforested Acres - Medium Intensity<br>Management | 6.07E-07 | 3.77E-07 |
| Electricity - Stationary Grid                         | 1.09E+03 | 8.62E+02 |
| Production of Coal, Well-to-POU                       | 3.01E-04 | 2.35E-09 |
| Production of Non-Road Diesel, Well-to-POU            | 1.06E-05 | 1.01E-05 |
| Production of Diesel Fuel, Well-to-POU                | 8.57E-05 | 3.30E-04 |
| Production of Gasoline, Well-to-POU                   | 1.17E-05 | 2.13E-07 |
| Production of Hogfuel/Biomass, Well-to-POU            | 4.47E-03 | 1.74E-04 |
| Production of LPG, Well-to-POU                        | 1.37E-04 | 3.56E-05 |
| Production of Natural Gas, Well-to-POU                | 1.48E-03 | 9.59E-04 |
| MUF Hardener (for Glulam)                             | 6.83E-07 | 0.00E+00 |
| MUF Resin (for Glulam)                                | 6.15E-06 | 0.00E+00 |

| Scaling Matrix (s Matrix)                                             | Glulam   | LVL      |
|-----------------------------------------------------------------------|----------|----------|
| PRF Hardener (for Glulam)                                             | 3.29E-05 | 0.00E+00 |
| PRF Resin (for Glulam)                                                | 5.81E-06 | 0.00E+00 |
| PF Resin Manufacture (for LVL)                                        | 0.00E+00 | 9.36E-06 |
| Sawmill                                                               | 1.24E-04 | 0.00E+00 |
| Kiln Drying                                                           | 1.24E-04 | 0.00E+00 |
| Lumber Planer                                                         | 1.24E-04 | 0.00E+00 |
| Glulam Plant                                                          | 1.24E-04 | 0.00E+00 |
| Debarking                                                             | 0.00E+00 | 1.33E-04 |
| Log Conditioning                                                      | 0.00E+00 | 1.33E-04 |
| Green Veneer                                                          | 0.00E+00 | 1.33E-04 |
| Dry Veneer                                                            | 0.00E+00 | 1.33E-04 |
| Press & lay-up                                                        | 0.00E+00 | 1.33E-04 |
| Trim and saw                                                          | 0.00E+00 | 1.33E-04 |
| LVL Plant                                                             | 0.00E+00 | 1.33E-04 |
| Heavy Truck Transport                                                 | 5.52E+02 | 1.85E+02 |
| Rail Transport                                                        | 1.85E-02 | 1.15E-02 |
| Construction Installation of Glulam in Residence 75-Year Design Life  | 0.00E+00 | 0.00E+00 |
| Construction Installation of LVL in Residence 75-<br>Year Design Life | 0.00E+00 | 0.00E+00 |
| Disposal of EWP in Landfill (Including Demolition)                    | 0.00E+00 | 0.00E+00 |

| Inventory Matrix (g Matrix) | Glulam    | LVL       | Inventory Matrix (g Matrix)                   | Glulam   | LVL      |
|-----------------------------|-----------|-----------|-----------------------------------------------|----------|----------|
| Total Energy                | -1.77E+09 | -1.41E+09 | N2O                                           | 3.39E+03 | 2.69E+03 |
| Coal                        | -1.22E+09 | -9.69E+08 | NOx: Total                                    | 2.60E+05 | 2.07E+05 |
| Fossil Fuels                | -1.71E+09 | -1.36E+09 | SOx: Total                                    | 5.72E+05 | 4.54E+05 |
| Hydro Energy                | -1.55E+01 | 0.00E+00  | VOC: Total                                    | 2.14E+04 | 1.70E+04 |
| Natural Gas                 | -3.95E+08 | -3.14E+08 | Formaldehyde                                  | 1.25E-09 | 1.50E-08 |
| Other (Nuclear, Undefined)  | 0.00E+00  | 0.00E+00  | Dust                                          | 3.31E-08 | 2.94E-12 |
| Petroleum                   | -9.56E+07 | -7.59E+07 | Particulates (unspecified)                    | 5.29E-05 | 6.75E-08 |
| Uranium Ore                 | -8.75E-09 | 0.00E+00  | PM10: Total                                   | 3.14E+05 | 2.50E+05 |
| Water                       | -3.39E-02 | -5.11E-02 | PM2.5: Total                                  | 8.28E+04 | 6.58E+04 |
| Iron Ore                    | -4.02E-09 | 0.00E+00  | Particulates Total (Dust, PM10, PM2.5, unsp.) | 3.97E+05 | 3.15E+05 |
| K-fertilizer                | -9.84E-11 | -6.11E-11 | Aromatics                                     | 2.03E-10 | 0.00E+00 |
| Limestone                   | -3.23E-08 | 0.00E+00  | Acetone                                       | 0.00E+00 | 1.52E-08 |
| NaCl                        | -1.06E-06 | 0.00E+00  | Ammonia                                       | 4.68E-10 | 4.21E-12 |
| Nitrogen                    | -8.10E-08 | 0.00E+00  | Benzene                                       | 1.57E-10 | 0.00E+00 |
| Phosphate                   | -1.80E-09 | 0.00E+00  | Ethanol                                       | 1.77E-08 | 0.00E+00 |
| Sulphur                     | -2.85E-07 | 0.00E+00  | Floride                                       | 0.00E+00 | 0.00E+00 |
| CH4                         | 3.21E+05  | 2.55E+05  | HCI                                           | 1.85E-10 | 0.00E+00 |
| CO: Total                   | 6.35E+04  | 5.04E+04  | Hydrocarbons                                  | 9.19E-08 | 0.00E+00 |
| CO <sub>2</sub>             | 2.39E+08  | 1.89E+08  | Methanol                                      | 4.80E-08 | 4.55E-08 |
| GHGs                        | 2.47E+08  | 1.96E+08  | Phenol                                        | 3.70E-08 | 1.26E-08 |

- Factors from FRED
- 16 environmental flows considered
- Air emission impact categories
  - Global warming potential
  - Photochemical smog
  - Acidification
  - Eutrophication
  - Human health (± carcinogens)
  - Ecotoxicity

| FRED Impact Equivalancy Factors (Q Matrix) | Unit | Category     | GWP | Smog | Acid  | Eutro | HH NC | ннс   | Eco |
|--------------------------------------------|------|--------------|-----|------|-------|-------|-------|-------|-----|
| CH4                                        | g    | Air Emission | 21  |      |       |       |       |       |     |
| CO: Total                                  | g    | Air Emission |     | 0.07 |       |       |       |       |     |
| CO <sub>2</sub>                            | g    | Air Emission | 1   |      |       |       |       |       |     |
| N2O                                        | g    | Air Emission | 310 |      |       |       |       |       |     |
| NOx: Total                                 | g    | Air Emission |     |      | 0.7   | 0.13  |       |       |     |
| SOx: Total                                 | g    | Air Emission |     |      | 1     |       |       |       |     |
| Formaldehyde                               | g    | Air Emission |     | 9.12 |       |       | 7     | 0.003 | 7.4 |
| Aromatics                                  | g    | Air Emission |     | 3.93 |       |       |       |       |     |
| Acetone                                    | g    | Air Emission |     | 0.48 |       |       |       |       |     |
| Ammonia                                    | g    | Air Emission |     |      | 1.9   | 0.33  | 3.2   |       |     |
| Benzene                                    | g    | Air Emission |     |      |       |       |       |       |     |
| Ethanol                                    | g    | Air Emission |     | 1.92 |       |       |       |       |     |
| Floride                                    | g    | Air Emission |     |      |       |       |       |       | 7.3 |
| HCI                                        | g    | Air Emission |     |      | 0.087 |       |       |       | 11  |
| Methanol                                   | g    | Air Emission |     | 0.99 |       |       |       |       |     |
| Phenol                                     | g    | Air Emission |     | 1.86 |       |       | 0.045 |       |     |

#### Calculations in MATLab

| Total Environmental Impact<br>(h Matrix) | Glulam   | LVL      |
|------------------------------------------|----------|----------|
| Global Warming Potential                 | 2.46E+08 | 1.96E+08 |
| Photochemical Smog                       | 4.44E+03 | 3.53E+03 |
| Acidification                            | 7.55E+05 | 5.99E+05 |
| Eutrophication                           | 3.38E+04 | 2.69E+04 |
| Human Health (Non-Carcinogen)            | 1.19E-08 | 1.06E-07 |
| Human Health (Carcinogen)                | 3.75E-12 | 4.51E-11 |
| Ecotoxity                                | 1.13E-08 | 1.11E-07 |

- Normalization Results for Key Issues
  - Current U.S. Population = 303,616,968
  - (<u>http://www.census.gov/</u>)
  - Class notes for normalization factors

#### Normalization Factors: AS PERCENT OF THE US TOTAL

Climate change 2.192E+04 kg CO2 equivalents/capita

Acidification 2.187E+04 kg H+ equivalents/capita

| Normalized Impacts (h Matrix) | Glulam    | LVL       |
|-------------------------------|-----------|-----------|
| Global Warming Potential      | 0.0037%   | 0.0029%   |
| Acidification                 | 0.000011% | 0.000009% |

### Interpretation

#### Contribution Analyses

|                 | Worst Process Contributors   | % Impact | Beam |
|-----------------|------------------------------|----------|------|
| Global Warming  | Well to POU Diesel           | 94.6%    | Both |
| Smog            | Production of Electricity    | 28.0%    | Both |
| Acidification   | Well to POU Diesel           | 93.4%    | Both |
| Eutrophication  | Production of Electricity    | 43.9%    | Both |
| Human Health NC | PF Resin Manufacture for LVL | 84.9%    | LVL  |
| Human Health C  | PF Resin Manufacture for LVL | 97.6%    | LVL  |
| Ecotoxicity     | PF Resin Manufacture for LVL | 94.0%    | LVL  |

- 16 of 39 processes have no associated impact!
  - None for forest management?
  - Hmmm....

#### **Contribution Analyses**





# Interpretation

#### ■ Data Quality Score = 1.22

| Discrepancy Matrix (d Matrix)                      | Glulam    | LVL       |
|----------------------------------------------------|-----------|-----------|
| PNW Nitrogen Fertilizer Production                 | -2.08E-15 | 2.00E-17  |
| PNW Phosphorous Fertilizer Production              | 1.13E-14  | 4.92E-17  |
| Lubricant Production (Hollow Process)              | 9.83E-20  | 8.30E-20  |
| PNW Greenhouse Seedling Production                 | 5.92E-15  | 2.22E-16  |
| PNW Harvest Acres - High Intensity Management      | 0.00E+00  | 2.17E-19  |
| PNW Harvest Acres - Low Intensity Management       | -7.16E-18 | -1.82E-17 |
| PNW Harvest Acres - Medium Intensity Management    | -5.20E-18 | 3.47E-18  |
| PNW Reforested Acres - High Intensity Management   | -1.36E-21 | -5.77E-21 |
| PNW Reforested Acres - Low Intensity Management    | 2.01E-20  | 5.40E-21  |
| PNW Reforested Acres - Medium Intensity Management | 0.00E+00  | 5.29E-23  |
| Electricity - Stationary Grid                      | -9.09E-13 | 0.00E+00  |
| Production of Coal, Well-to-POU                    | -4.26E-14 | -6.80E-15 |
| Production of Non-Road Diesel, Well-to-POU         | -8.88E-16 | -2.66E-15 |
| Production of Diesel Fuel, Well-to-POU             | 1.28E-13  | -3.55E-15 |
| Production of Gasoline, Well-to-POU                | 3.50E-13  | 9.33E-14  |
| Production of Hogfuel/Biomass, Well-to-POU         | 0.00E+00  | 5.33E-14  |
| Production of LPG, Well-to-POU                     | 0.00E+00  | -7.11E-15 |
| Production of Natural Gas, Well-to-POU             | -1.48E-11 | -1.02E-12 |
| MUF Hardener (for Glulam)                          | -1.08E-19 | 0.00E+00  |
| MUF Resin (for Glulam)                             | 0.00E+00  | 0.00E+00  |

| Discrepancy Matrix (d Matrix)                                         | Glulam    | LVL       |
|-----------------------------------------------------------------------|-----------|-----------|
| PRF Hardener (for Glulam)                                             | -8.67E-19 | 0.00E+00  |
| PRF Resin (for Glulam)                                                | 6.94E-18  | 0.00E+00  |
| PF Resin Manufacture (for LVL)                                        | 0.00E+00  | 0.00E+00  |
| Sawmill                                                               | 0.00E+00  | 0.00E+00  |
| Kiln Drying                                                           | 0.00E+00  | 0.00E+00  |
| Lumber Planer                                                         | 0.00E+00  | 0.00E+00  |
| Glulam Plant                                                          | 0.00E+00  | 0.00E+00  |
| Debarking                                                             | 0.00E+00  | 0.00E+00  |
| Log Conditioning                                                      | 0.00E+00  | 0.00E+00  |
| Green Veneer                                                          | 0.00E+00  | 0.00E+00  |
| Dry Veneer                                                            | 0.00E+00  | 0.00E+00  |
| Press & lay-up                                                        | 0.00E+00  | 0.00E+00  |
| Trim and saw                                                          | 0.00E+00  | 0.00E+00  |
| LVL Plant                                                             | 0.00E+00  | -8.88E-16 |
| Heavy Truck Transport                                                 | -1.11E-16 | 1.11E-16  |
| Rail Transport                                                        | -6.83E-16 | -4.66E-16 |
| Construction Installation of Glulam in Residence 75-Year Design Life  | 0.00E+00  | 0.00E+00  |
| Construction Installation of LVL in Residence 75-<br>Year Design Life | 0.00E+00  | 0.00E+00  |
| Disposal of EWP in Landfill (Including<br>Demolition)                 | 0.00E+00  | 0.00E+00  |

#### Interpretation

- MATLab to the rescue again...
- Condition number
  - Upper bound for uncertainties...
  - $-\kappa = 2.18 \times 10^{13}!!$
- Sensitivity/Perturbation Analyses
  - Fossil fuel and resource use processes and related environmental flows are most influenced by small perturbations
  - Some values approach |1| but none exceed
  - Possibly due to data gaps

#### Summary

- Glulam appears more environmentally detrimental than LVL
- LVL loses for human health and ecotoxicity impacts
  - More data was available on glulam resin production than for LVL
  - Glulam has less volume of wood in final product!
  - LVL process was black-boxed by CORRIM

#### Recommendations

- Gather more primary data
  - Resin manufacture (though proprietary)
  - Lubricants
  - CO<sub>2</sub> emissions reporting from wood manufacturers
  - C&D data for components
  - Update existing information
- Refine model to be local or regional
- Compare with dimension lumber
- Consider recycling, co-products, other emissions
- Try other transportation models
  - Consider backhaul
- Pursue cost analysis on smaller scale
  - CORRIM performed but not for individual components

#### Sources

- Canadian Wood Council. <a href="http://www.cwc.ca">http://www.cwc.ca</a>
- Conner, Anthony. "Urea-Formaldehyde Adhesive Resins." http://www.fpl.fs.fed.us/documnts/pdf1996/conne96a.pdf
- Consortium for Research on Renewable Industrial Materials. <a href="http://www.corrim.org/">http://www.corrim.org/</a>
- NESHAP Industry Profile for the Proposed Wood Building Products, NESHAP Final Report 453R01002
- NREL U.S. Life-Cycle Inventory Database <a href="http://www.nrel.gov/lci/">http://www.nrel.gov/lci/</a>
- State of Washington Department of Community, Trade and Economic Development. "Fuel Mix Disclosure." <a href="http://www.cted.wa.gov/DesktopModules/CTEDPublications/CTEDPublicationsView.aspx?tabID=0&ItemID=4672&MId=863&wversion=Staging">http://www.cted.wa.gov/DesktopModules/CTEDPublications/CTEDPublicationsView.aspx?tabID=0&ItemID=4672&MId=863&wversion=Staging</a>
- U.S. Census Bureau. <a href="http://www.census.gov/">http://www.census.gov/</a>
- U.S. Forest Stewardship Council. <a href="http://www.fscus.org/">http://www.fscus.org/</a>
- U.S. Green Building Council. LEED-NC for New Construction: Reference Guide v2.2. 1st Ed. USGBC: Oct 2005.
- Weyerhaeuser Company. <a href="http://www.weyerhaeuser.com/">http://www.weyerhaeuser.com/</a>
- Others....