Example Problem: Air Pollutant Concentration Downwind of Ground Level Point Source

Given:

a.	Q = 1 gm/sec emission rate of H$_2$S from ground level vent
b.	wind speed = u = 3 meter/sec
c.	atmospheric stability classes of B and D (or 2 and 4)
d.	"Acceptable source impact level" or ASIL for H$_2$S = 0.9 μg/m3 for 24 hr average
e.	equation 4-10 page 151 WW&Davis, for conc downwind with Z = 0, Y = 0

where Z is the vertical height above ground level & Y = distance from plume centerline (or in otherwords, equation is for ground level emission & ground level air poll. conc.)

Find: H$_2$S concentration in x = 100 to 7000 meters downwind.

Equation for pollutant conc C, eq 4.10 page 151 Wark, Warner & Davis is shown below:

\[
C := \frac{Q}{\pi \cdot u \cdot \sigma_y \cdot \sigma_z}
\]

Using 8 downwind distances x in meters

The parameters σ_y and σ_z are the horizontal and vertical dispersion coefficients (sometimes called "standard deviations" as is presented on page 152 WW&D). These dispersion coefficients are for 10 minute average air pollutant concentrations, air pollutant concentrations in flat level open country, and for concentrations in under about 200 meters elevation above ground level. σ_y and σ_z are a function of the atmospheric stability class and downwind distance x from the emission. The σ_y and σ_z shown below are from a table in Wark & Warner, 2nd edition.

\[
\begin{align*}
\sigma_yB &:= \begin{bmatrix} 19 \\ 36 \\ 67 \\ 112 \\ 155 \\ 295 \\ 550 \\ 880 \end{bmatrix} \cdot m \\
\sigma_zB &:= \begin{bmatrix} 11 \\ 20 \\ 40 \\ 73 \\ 110 \\ 230 \\ 500 \\ 780 \end{bmatrix} \cdot m \\
\sigma_yD &:= \begin{bmatrix} 8 \\ 15 \\ 29 \\ 48 \\ 68 \\ 130 \\ 245 \\ 400 \end{bmatrix} \cdot m \\
\sigma_zD &:= \begin{bmatrix} 5 \\ 8 \\ 15 \\ 24 \\ 32 \\ 50 \\ 77 \\ 109 \end{bmatrix} \cdot m
\end{align*}
\]

\[
\begin{align*}
\sigma_y &:= \pi \cdot u \cdot \sigma_y \\
\sigma_z &:= \pi \cdot u \cdot \sigma_z
\end{align*}
\]

Equation for pollutant conc C, eq 4.10 page 151 Wark, Warner & Davis is shown below:

\[
C := \frac{Q}{\pi \cdot u \cdot \sigma_y \cdot \sigma_z}
\]

Horizontal Dispersion Coefficients

Vertical Dispersion Coefficients

Example Problem: Air Pollutant Concentration Downwind of Ground Level Point Source

Given:

- a. Q = 1 gm/sec emission rate of H$_2$S from ground level vent
- b. wind speed = u = 3 meter/sec
- c. atmospheric stability classes of B and D (or 2 and 4)
- d. "Acceptable source impact level" or ASIL for H$_2$S = 0.9 μg/m3 for 24 hr average
- e. equation 4-10 page 151 WW&Davis, for conc downwind with Z = 0, Y = 0

where Z is the vertical height above ground level & Y = distance from plume centerline (or in otherwords, equation is for ground level emission & ground level air poll. conc.)

Find: H$_2$S concentration in x = 100 to 7000 meters downwind.

Equation for pollutant conc C, eq 4.10 page 151 Wark, Warner & Davis is shown below:

\[
C := \frac{Q}{\pi \cdot u \cdot \sigma_y \cdot \sigma_z}
\]

Using 8 downwind distances x in meters

The parameters σ_y and σ_z are the horizontal and vertical dispersion coefficients (sometimes called "standard deviations" as is presented on page 152 WW&D). These dispersion coefficients are for 10 minute average air pollutant concentrations, air pollutant concentrations in flat level open country, and for concentrations in under about 200 meters elevation above ground level. σ_y and σ_z are a function of the atmospheric stability class and downwind distance x from the emission. The σ_y and σ_z shown below are from a table in Wark & Warner, 2nd edition.

\[
\begin{align*}
\sigma_yB &:= \begin{bmatrix} 19 \\ 36 \\ 67 \\ 112 \\ 155 \\ 295 \\ 550 \\ 880 \end{bmatrix} \cdot m \\
\sigma_zB &:= \begin{bmatrix} 11 \\ 20 \\ 40 \\ 73 \\ 110 \\ 230 \\ 500 \\ 780 \end{bmatrix} \cdot m \\
\sigma_yD &:= \begin{bmatrix} 8 \\ 15 \\ 29 \\ 48 \\ 68 \\ 130 \\ 245 \\ 400 \end{bmatrix} \cdot m \\
\sigma_zD &:= \begin{bmatrix} 5 \\ 8 \\ 15 \\ 24 \\ 32 \\ 50 \\ 77 \\ 109 \end{bmatrix} \cdot m
\end{align*}
\]

\[
\begin{align*}
\sigma_y &:= \pi \cdot u \cdot \sigma_y \\
\sigma_z &:= \pi \cdot u \cdot \sigma_z
\end{align*}
\]

The parameters σ_y and σ_z are the horizontal and vertical dispersion coefficients (sometimes called "standard deviations" as is presented on page 152 WW&D). These dispersion coefficients are for 10 minute average air pollutant concentrations, air pollutant concentrations in flat level open country, and for concentrations in under about 200 meters elevation above ground level. σ_y and σ_z are a function of the atmospheric stability class and downwind distance x from the emission. The σ_y and σ_z shown below are from a table in Wark & Warner, 2nd edition.
Now we can have Mathcad calculate the downwind H₂S 10 min average concentrations C for the atm stability classes B & D at the various downwind distances x

\[
CB_i := \frac{Q}{\pi \cdot u \cdot \sigma y_i \cdot \sigma z_i} \\
CD_i := \frac{Q}{\pi \cdot u \cdot \sigma y_D \cdot \sigma z_D}
\]

\[
\begin{array}{cccc}
\text{CB} & \text{CD} & \text{x} & \text{CD} \\
507.671 & 147.366 & 100 & 2652.582 \\
39.591 & 400 \\
12.977 & 700 \\
6.223 & 2000 \\
1.564 & 4000 \\
0.386 & 7000 \\
0.155 & \\
\end{array}
\]

To convert from 10 minute to 24 hr averaging time, note that the EPA assumes the 10 min average conc represents the maximum 1-hr conc. and in the Table on page 169 WW&D it shows the 24 hr average conc. = 0.40 (1 hr average conc)

\[
CBP_i := (0.4) \cdot \left(10^9 \cdot CB_i\right) \\
CDP_i := (0.4) \cdot \left(10^9 \cdot CD_i\right)
\]

For graphing, convert the conc from kg/m² to microgram/m² multiply by \(10^9\) (Mathcad graphs conc. in kg/m² and not able to change it to micrograms/m²)

The graph below shows the 24 hr average H₂S concentrations downwind for Atm Stab Classes B & D. The upper solid red curve is class D, the dashed blue curve is B.

Do any of the H₂S concentrations exceed the Washington State ASIL or Accepted Source Impact Level of 0.9 \(\mu g/m^3\) for 24 hr average concentration?

Yes - the 24 hr H₂S concentration exceeds 0.9 \(\mu g/m^3\) for downwind distances from \(x = 0\) to about \(x = 6500\) meters for atmospheric stability class D - and from \(x = 0\) to \(x = 1700\) meters for class B.

The ASIL is the "Accepted Source Impact Level" and is used by the State of Washington. Most other states use the AAL or "Acceptable Ambient Level" for the "standard" for toxic and/or hazardous air pollutants (applies to permit to construct applications).