Health Effects of Air Pollution

For extra reference: EPA http://www.epa.gov/air/urbanair/

Criteria Air Pollutants

- Gases: O_3 , CO, NO_x , So_x
- Particles: PM2.5, Pb
 - NAAQS from US Federal Clean Air Act
 - Primary standards: protect public health, including "sensitive" populations
 - Secondary standards: protect public welfare Hazardous Air Pollutants: Hg, dioxins, etc
 - Regulated under 1990 CAA Amendments
- Some other important health aspects
 - Bioaerosols, medicinal purposes

Exposure to Air Pollutants

- Chronic
- Acute
 - Air Pollution Episode short-term increase concentrations
- Dependent on local conditions
- Epidemiological studies
 - Statistical relationship between environmental factors and human disease
 - Population susceptibility or change
 - Latency period
 - Lung cancer up to 30 years
- Toxicological studies
 - Determine effects of toxic substances
- Pollutant interactions

Smog Episode in New York City, 1963 National Archives, photo by Chester Higgins

Respiratory System

- Pollutants transported in via inhalation-respiratory tracts
- Person at rest breathes 12 to 15 times a minute (10 liters/min)
- 3 parts of respiratory system
 - Naso-pharyngeal (HAR)
 - Tracheo-bronchial (TBR)
 - Pulmonary-Alveolar (GER)

Lungs serve as portal of entr

- Highly permeable and lots of blood flow
- Pulmonary-Alveolar Surface
 Area > 75 m²

Nasal cavity

Air passing over the mucous membrane of the nasal cavity is moistened, warmed, and filtered.

Bronchiole

Inside the lungs, the bronchi branch into smaller tubes called ~ the bronchioles.

Pharynx

The pharynx, or throat, is located where passages from the nose and mouth come together.

Epiglottis

The epiglottis is a flap of elastic tissue that forms a lid over the opening to the trachea.

Larynx

The larynx, or voice box, is located between the pharynx and the trachea. It contains two ligaments—the vocal cords that produce sound when air moves through them.

Lungs

If one lobe is injured or diseased, the other lobes may be able to function normally.

Alveoli

At the ends of the bronchioles are bunches of alveoli, air sacs, arranged like grapes on a stem.

Trachea

From the larynx, air enters the trachea, or windpipe, which leads toward the lungs.

Bronchi

The trachea divides into two tubes called bronchi.

Figure 44-8 Biological Science, 2/e © 2005 Pearson Prentice Hall, Inc.

Small aerosol particles can penetrate through the alveoli wall

Respiratory System

- Natural protection mechanisms (for particles)
- Naso-pharyngeal (HAR)
 - Nose hairs (filter particles)
 - Cough, Sneeze
 - Mouth breathing vs nasal breathing
- Tracheo-bronchial (TBR)
 - Mucociliary "escalator"
 - Bronchial constriction
- Pulmonary-Alveolar (GER)
 - Macrophages (phagocytosis)
 - No cilia in Alveoli

Question: Do the natural protection mechanisms protect against toxic gases such as CO, O_3, SO_2 ?

Respiratory Particle Cleaning Mechanisms

Clearance Mechanism	Site Cleaned	Rate of Cleaning	
Cough	Trachea, brochus	Instantaneous	
Ciliary	Large Bronchi	0.5 hr	
	bronchiole tree	3 hrs	
	Bronchiole airways	6 hrs	
macrophages	Alveoli (air sacs)	24 hrs	
lymphatics	Lung tissue	Months,years	

Criteria Air Pollutants: Particulate Matter PM

- Small solid/liquid aerosol particles that remain suspended in air
- Causes: materials handling, combustion processes, gas conversion reactions
- Main sources: industrial processes, coal and oil burning, diesel motor vehicles

Pollutant	Primary Stds. (human health)	Averaging Times	Secondary Stds.
Particulate Matter (PM10)	<i>Replaced with PM 2.5</i>	<u>Annual</u> <u>(Arith. Mean)</u>	
	150 µg/m ³	<u>24-hour</u>	
Particulate Matter (PM2.5)	15.0 μg/m ³	<u>Annual</u> <u>(Arith. Mean)</u>	Same as Primary
	35 μg/m ³	<u>24-hour</u>	

Criteria Air Pollutants: Particulate Matter

- Following inhalation: two possible fates
 - Deposition or Exhalation
- Particle Fate depends upon:
 - Aerodynamic & physiological behavior (human being)
- Methods of Particle Deposition
 - Interception, Inertial Impaction, Brownian Diffusion, Electrostatic Attraction, Gravitational Settling

Diffusion

Criteria Air Pollutants: Particulate Matter

- Deposition Mechanisms
 - Inertial Impaction
 - Predominant for $d_p \ge 3 \ \mu m$ $\rightarrow PM_{2.5}$ regulations
 - Primarily in Nasopharyngeal or Tracheobronchial regions
 - Brownian diffusion
 - Predominant for $d_p \le 0.5 \ \mu m$
 - Primarily in Pulmonary-Alveolar region

Gravitational Settling

- 3-5 μ m (V_{TS} \propto d_{ar}²)
- Distal regions of bronchial airways
- Minimal Mechanisms
 - Electrostatic
 Attraction
 - Interception
 - Elongated particles such as fibers

Particulate Matter

DF=Total DFHA=Head Airways DFTB=Tracheobronchial DFAL=Alveolar region

Why is there a dip in particle deposition between 0.1 and 1 μm?
 Assume this is for nasal breathing.

How might this graph change for mouth breathing?

Criteria Air Pollutants: Particulate Matter

- Wheezing & coughing to heart attacks and death
- TSP (Total Suspended Particles)
 - In presence of SO₂, direct correlation between TSP and hospital visits for bronchitis, asthma, emphysema, pneumonia, and cardiac disease
 - Studies suggest ~60,000 deaths from PM
 - 1% increase in mortality for 10 μ g/m³ increase in PM
 - Respiratory mortality up 3.4% for the same Cardiovascular mortality up 1.4% for the same

Criteria Air Pollutants: Particulate Matter

- PM₁₀ d_p <10 μm, coarse (2.5-10 μm) & fine particles
 Particles > 10 μm mostly deposited in nasal-pharangycal
- PM_{2.5} (<2.5 μm, fine particles)
 - Serious health effects in alveolar/gas exchange region

 → shift in EPA regulation changed PM₁₀ to PM_{2.5}

 Toxic or Carcinogenic pesticides, lead, arsenic, radioactive material 8% Increase in lung cancer for each 10 µg/m³ increase in PM_{2.5}

Criteria Air Pollutant: Particulate Matter

- Asthma
 - 14 Americans die/day of asthma

(3 times greater than 20 yrs ago)

- More medicine, more doctor & hospital visits

 \rightarrow more health care costs

- Particulate episodes in presence of SO₂ ("Killer Smogs")
 - 1930: Meuse Valley in Belgium 60 deaths
 - 1948: Donora, Pennsylvania 20 deaths
 - 1952: "Lethal London Smog"- 12,000 deaths

Criteria Air Pollutants: Carbon Monoxide CO

- Colorless, odorless, tasteless gas \rightarrow "Silent Killer"
 - Cause: incomplete combustion of carbon based fuels
 - Source: transportation sector, residential heating units
 - NAAOS regulates CO in outdoor air
- OSHA (50 ppm CO averaged over 8-hour period)

Pollutant	Primary Stds.	Averaging Times	Secondary Stds.
Carbon Monoxide	9 ppm (10 milligram/m ³)	8-hour	None
	35 ppm (40 milligrams/m ³)	1-hour	None

Criteria Air Pollutants: Carbon Monoxide CO

- Reacts with blood hemoglobin
 - Forms carboxyhemoglobin (HbCO) rather than oxyhemoglobin (HbO₂)
 - Prevents oxygen transfer

Toxic effects on humans

- Low-level: cardiovascular & neurobehavior
- Headaches/nausea/fatigue/ death
- Oxygen deficient to vulnerable people (anemia, chronic heart or lung disease, high altitude residents, smokers)
 - Cigarette smoke: 400-450 ppm; smoker's blood 5-10% HbCO vs 2% for non-smoker

Criteria Air Pollutants: Carbon Monoxide CO

- Concern in homes
 Install CO monitor
- No indoor CO regulations
 - >70 ppm → flu-like symptoms (w/out fever)
 - 150-200 ppm \rightarrow disorientation, drowsiness, vomiting
 - >300 ppm \rightarrow unconsciousness, brain damage, death
 - 500 Americans die/year from unintentional CO poisoning
- Treatment: fresh air, oxygen therapy, hyperbaric chamber

Criteria Air Pollutants: Ozone O₃

- Cause: atmospheric photochemical reaction
- Reactants: Hydrocarbons & Nitrogen Oxides
- NAAQS .08 ppm or 80 ppb 8 hr average .12 ppm or 120 ppb 1 hr average
- Acute Health effects
 - Severe ear/nose/throat irritation
 - Eye irritation at 100 ppb ozone
 - Interferes with lung functions
 - Coughing at 2 ppm ozone
- Chronic Health Effects
 - Irreversible, accelerated lung damage
 - Why do we use ozone as disinfectant for water and wastewater treatment?

Criteria Air Pollutants: Nitrogen Oxides NO_x

- Cause: Fuel combustion at high temps
- Source: mobile & stationary combustion sources
- Prolonged exposure → pulmonary fibrosis, emphysema, and higher lower respiratory tract illness in children
- NAAQS = Annual Average 0.053 ppm as NO₂
- Toxic effects at 10-30 ppm NOx
 - Nose and eye irritation
 - Lung tissue damage
 - Pulmonary edema (swelling)
 - Bronchitis
 - Defense mechanisms
 - Pneumonia
 - Aggravate existing heart disease

Criteria Air Pollutants: Sulfur Oxides SO_x

- Cause: Burning fuel that contains sulfur
- Source: Electric power generation, diesel trucks
- Gas and particulate phase
- Soluble and absorbed by respiratory system
- NAAQS = 0.14 ppm 24 hr average
- Short-term intermittent exposures
 - Broncho-constriction (temporary breathing difficulty)
 - Ear/Nose/Throat irritation
 - Mucus secretion
- Long-term exposures
 - Respiratory illness
 - Aggravates existing heart disease
- Intensified in presence of Particulate Matter
 - London "Killer" Smog health effects were combination of the two air pollutants (SOx and aerosol particles)

Criteria Air Pollutants: Lead (Pb)

- Source: burning fuels that contain lead (phased out), metal processing, waste incinerators, lead smelters, lead paint
- Absorbed into blood; similar to calcium
- NAAQS = $1.5 \,\mu g/m^3 Pb$ Quarterly Average
- Kellog Idaho Lead smelter emissions caused children in region to have lower IQ and brain effects (UW CEE grad was EPA engineer in charge of cleanup at this site).
- Accumulates in blood, bones, muscles, fat
 - Damages organs kidneys, liver, brain, reproductive system, bones (osteoporosis)
 - Brain and nervous system seizures, mental retardation, behavioral disorders, memory problems, mood changes,
 - Young children lower IQ, learning disabilities
 - Heart and blood high blood pressure and increased heart disease
 - Chronic poisoning possible

Criteria Air Pollutants: Air Quality Index (AQI)

- EPA AQI is for reporting daily air quality. The AQI focuses on short term health effects (1-48 hr after exposure). AQI is calculated from concentrations of SO₂, CO, O₃, and particles.
- AQI values in the 0-50 indicates Good air quality.
- AQI in the 51-100 range indicates Moderate air quality and exposures will cause short term health effects to some sensitive people (*and unhealthy effects for long-term exposure for most people*).
- Pilat opinion is that "Moderate" air quality is not very healthy. The SO₂, PM, and O₃ NAAQS standards are set at levels with proven damaging health effects with little or no margin of safety; the CO NAAQS standard has a margin of safety.

Criteria Air Pollutants: Air Quality Index (AQI)

AQI is the highest magnitude of the PM,
 SO₂, CO, and O₃ individual Index values

AQI Value	Air Quality	24 hr PM2.5	24 hr SO ₂	8 hr CO	8 hr O ₃
		(μ g/m³)	(ppm)	(ppm)	(ppm)
0-50	Good	0-15.4	0.0034	0.0-4.4	.000064
51-100	Moderate	15.5-40.4	.035144	4.5-9.4	.065084
101-150	Unhealthy to Sensitive	40.5-65.4	.145224	9.5-12.4	.085104
151-200	Unhealthy	65.5-150.4	.225304	12.5-15.4	.105124
201-300	Very Unhealthy	150.5-250.4	.305604	15.5-30.4	.125374
NAAQS		35 µg/m³	0.14 ppm	9 ppm	.08 ppm

http://airnow.gov.index.cfm?action=aqiconc_aqi_calc

• Equation for Calculating an Air Pollutant AQI Index Value

$$\mathbf{I}_{P} = \left(\frac{\mathbf{I}_{Hi} - \mathbf{I}_{Lo}}{\mathbf{BP}_{Hi} - \mathbf{BP}_{Lo}}\right) \left[\mathbf{Cp} - \mathbf{BP}_{Lo}\right] + \mathbf{I}_{Lo}$$

Ip = Index magnitude for air pollutant P Cp = concentrat ion for pollutant P $I_{Hi} = AQI$ value corresponding to BP_{Hi} $I_{Lo} = AQI$ value corresponding to BP_{Lo} BP_{Hi} = breakpoint that is greater than Cp BP_{I_0} = breakpoint that is less than Cp

Calculate the AQ Index of air that contains 0.077 O₃ (8 hr average), 8.4 ppm CO (8-hr average), & 54.4 μ g/m³ PM 2.5 Particles (24-hour average)

$$I_{ozone} = \left(\frac{100 - 51}{0.084 - .065 \text{ ppm}}\right) [.077 - .065 \text{ ppm}] + 51 = 82$$
$$I_{CO} = \left(\frac{100 - 51}{9.4 - 4.5 \text{ ppm}}\right) [8.4 - 4.5 \text{ ppm}] + 51 = 90$$
$$I_{PM2.5} = \left(\frac{150 - 101}{65.4 - 40.5}\right) [54.4 - 40.5] + 101 = 128$$

The index calculated for the air pollutant PM2.5 is the highest magnitude so the Air Quality Index = 128

http://www.k12science.org/curriculum/airproj/whataqi.html

Hazardous Air Pollutant HAP: Mercury Hg

- Elemental Hg inhaled as a vapor, absorbed by lungs
- Cause: vaporized mercury
- Sources: coal combustion, accidental spill, mining (*teeth silver fillings*)
- Effects: Nervous system (acute, high), respiratory system (chronic, low), kidneys, skin, eyes, immune system; Mutagenic properties

- Symptoms
 - Acute: chills, nausea, chest pains/tightness, cough, gingivitis, general malaise
 - Chronic: weakness, fatigue, weight loss, tremor, behavioral changes

Hazardous Air Pollutant Dioxins

- Generic term for several chemicals that are highly persistent in the environment
 - chlorinated dibenzo-p-dioxins (CDDs)
 - chlorinated dibenzofurans (CDFs)
 - certain polychlorinated biphenyls (PCBs)
- Cause: burning hydrocarbons in presence of chlorine or chlorides
- Sources: waste incinerators
- Notice the Chlorine atoms on the benzene ring type molecules (probably all these type compounds are carcinogenic)
- Does using Chlorine to treat drinking water result in the formation of carcinogenic compounds?

3,3',4,4',5,5'-Hexachlorobiphenyl

Hazardous Air Pollutant: Dioxins

Comparative Photos Showing Ukraine's Viktor Yushchenko Immediately Prior To And Immediately Following Dioxin Poisoning

http://en.wikipedia.org/wiki/Viktor_Yushchenko (Note: this is an extreme case of dioxin poisoning)

• Varying toxicity

- Problems with high exposures
- Exact effects of low exposures not known
- Health Effects
 - Carcinogenic
 - Some are "known human carcinogen" (2,3,7,8 tetrachlordibenzo-p-dioxin, TCDD)
 - Other dioxins are "reasonably anticipated to be a Human Carcinogen"
 - Reproductive and developmental effects
 - Chloracne

Other Aerosols: Bioaerosols

Mechanical aeration at Waste water treatment plant

- Aerosols with organic origin
 - Non-viable: pollen, dander, insect excreta, sea salt
 - Viable: microorganisms
- Cause: aerosolization of organic materials
- Sources:
 - Human: sneezing, coughing
 - wind, waves, Waste water treatment plants, cooling towers
 - Health Effects: allergies (pollen)
 to death (pathogenic organisms)
 - Pathogenic Minimum Infectious Dose

Other Aerosols: Bioaerosols

- Allergies
 - Pollen, dander, fungi (spores)
- Airborne transmission of disease
 - Bird flu, SARS, Legionnella (pneumonia)
 - Indoor Air Quality
 - Ventilation Systems moist ductwork, protection, recycled air
 - Office Buildings Sick Building Syndrome
 - Hospital (nosocomial)
 - Biological Warfare
 - Anthrax, Ebola virus

Morning Glory Pollen SEM University of West GA Microscopy Center http://www.westga.edu/~geosci/wgmc/plants_pics.htm

Other Aerosols: Medicinal Applications

- Purposely applied medicine
- Take advantage of lung's large surface area of the thin membrane of alveolar air sacs through which aerosol particles (especially liquid solutions) easily pass into the blood.
- Asthma
 - Inhaler
- Diabetes
 - Pfizer uses Insulin