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quard-based duration models and their
-~~~ application to transport analyy
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and FRED L. MANNERING

s Department of Civil Engineering, University of Washington,
Seattle, WA, U.S.A.

A number of transport-related phenomena deal with a time element that defines
the duration until an event’s occurrence. Examples include the time that transpires
until a trip is made, the length of time a commuter delays a trip departure to
avoid traffic congestion, and the time until a newly introduced mode is used.
Hazard-based duration models, which have enjoyed widespread use in a number
of non-transport fields (e.g. economics, biostatistics), are an obvious choice for
modelling such transport phenomena. The objective of this paper is to present
hazard-based models, in a general way, t0 individuals interested in transport
problems. In so doing, every effort is made to avoid a jargon-laden approach that
typifies current articles and texts on the subject. It is hoped that such a presentation,
along with an overview of existing transport applications of such models, will lead
to an increased use of hazard-based duration models in transport.

*y

1. Introduction
In many fields of study, developing an understanding of the factors that determine

the time that transpires until or between the occurrence of specific events is often an

important analytic focus. Data that deal with time (or duration) until event occurrence
are commonly referred to as duration data. Such data are frequently encountered in
transport applications. Examples include the time that transpires until an individual
tries using a new mode or route, the time between vehicle purchases, the time between
vehicle accidents, the time until trying a new technology (e.g. airbags in cars or an
electric vehicle), the time until an incident (a vehicular accident or disablement) is
cleared from a highway, the length of time a commuter delays a trip departure to avoid
traffic congestion, the time that transpires between individuals’ decisions to make a
trip, and even the length of time waiting in vehicular queues at toll booths and/or
international border crossings.

Despite the large amount of duration-related phenomena encountered in the
transport field, surprisingly little has been done to analyse such phenomena
statistically. In many respects this lack of analysis can be traced back to the historical
development of transport modelling, which has been characterized by the use of
cross-sectional data and methods. This cross-sectional mindset, with relatively few
exceptions emanting from the growing interest in panel data, has pervaded both
transport research and practice and has acted as a barrier to the exploration of the many
duration-related issues encountered in the field.
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The study of duration data is commonly undertaken in a number of non-transport
disciplines. For example, industrial engineering looks at the length of time until
machine failures (Mann et al. 1974), medical sciences look at the length of time of
patient survival after corrective operations or disease treatments (Kalbfleisch and
Prentice 1980, Fleming and Harrington 1990), and economists consider the length of
time individuals are unemployed (Kiefer 1988). These fields have developed and
applied hazard-function methods to study duration data statistically. A hazard-function
may be interpreted as the instantaneous probability that episodes in the interval
(t,t + Af) are terminating provided that the event has not occurred before the beginning
of the interval. An episode (or spell) is the period of time between successive events.
Events are changes in the set of all distinct values that a variable may take.

Such methods focus on the probability of an end-of-duration occurrence
(e.g. a previously uneniployed individual getting a job) given that the duration has
lasted (i.e. ¢onditioned on the duration lasting) to some specified time. This conditional
probability of a duration ending is an extremely important concept because, in many
instances, the probability of ending a duration is clearly dependent on the length of
time the duration has lasted. For example, consider the availability of a new transport
mode. It would be expected that the probability of an individual trying the new mode
would change from day to day as a result of marketing efforts and word-of-mouth
feedback from others that have already tried the mode. Such changes in probabilities
are well-suited to hazard-based duration modelling methods which provide a tight link
between theory and the empirical approach. While hazard-based approaches do not
offer any computational advantage over approaches that fit probability distributions to
the duration data directly, they do allow one to formulate the problem in terms of the
conditional probabilities of interest, and such a formulation can provide valuable
insight into the empirical estimation of the model.

The intent of this paper is to introduce hazard-based duration modelling,
demonstrate its applicability to the study of transport problems, to review existing
transport applications of hazard-based models and to provide directions for future
research. The paper begins by providing an intuitive overview of hazard-based models
with a focus on data structure and the problems that incomplete data may introduce.
Next, hazard-based models are mathematically introduced and proportional and
accelerated-lifetime forms are discussed. This is followed by a presentation of possible
assumptions regarding the distribution of durations and the implications associated
with these assumptions. Issues of heterogeneity and state dependence are then
discussed along with possible methods of addressing these important issues.
Other possible statistical complications and alternative modelling approaches are
presented as well. The paper then gives an overview of known applications of
hazard-based models to transport problems and concludes with a summary and
directions for future research.

2. Hazard-based models: data structure and intuitive overview

To illustrate the dimensions of the problems presented when one chooses to
analyse duration data, the example of the introduction of a new mode of travel is used.
In this case, the analyst would not necessarily be interested in the ‘equilibrium’ state
of mode acceptance, which is the state that is presumably being captured when one
undertakes the estimation of standard logit-based mode-choice models. That is,
standard logit-based analyses of mode choice probabilities assume an instantaneous
adjustment to price, performance and other factors upon which modes are compared.
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Figure 1. Example of duration data.

However, there may be a strong interest in looking at the rate at which individuals
initially try the new mode on their way to establishing an equilibrium state, because
slow acceptance may create political and financial pressures that could affect modal
viability. Analysis of this acceptance rate is a classic application of duration data,
where duration in this case is defined as the time between the introduction of the new
mode and the time individuals first try the new mode.

Structurally, the data needed to model this duration problem is illustrated by the
example provided in figure 1. In this figure, five individuals are sampled to obtain
information on their trying a new mode. Information on the modal choices of these
individuals is collected over some period of time until the survey is terminated at time
C. At time C, there will likely be a group of individuals (e.g. individuals represented
by person 2 in figure 1) that either; (a) will never try the new mode, or (b) will
eventually try the new mode, but just have not done so up to time C. The duration
spells of these individuals will be censored since they are not observed trying the new
mode. This type of censoring is referred to as right-censoring.

Another type of censoring could arise if the survey was begun some time after the
new mode was introduced. In figure 1, for example, if the survey was started at time
B, it may be difficult to determine when an individual (such as individual 3) was first
exposed to the new mode. Such an individual may have moved into the geographic
area where the mode is available after the mode was first introduced. Being unable to
determine when durations begin is referred to as left-censoring. Left-censoring poses
the additional problem of not knowing the value of the determinants of duration
(e.g. income, household size, attitudes) at the beginning of the duration period.
Left-censoring can be avoided, in this case, by beginning the survey when the new
mode is first introduced (time A in figure 1). This will ensure full knowledge of the
lengths of durations as well as possible determinants of durations.

In gathering duration data, it is important to avoid left-censoring because this type
of censoring is difficult to handle in hazard-based models of duration. In contrast,
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right-censoring can be more easily handled. The modelling consequences of censoring
will be discussed later in this paper.

3. Hazard-based models: mathematical approach
Mathematically, the hazard function can be expressed in terms of a cumulative
distribution function, F(¢), and a corresponding density function, f(f). The cumulative
distribution is written as,

F)=Pr[T<i] (D

where Pr denotes the probability, T is a random time variable, and ¢ is some specified
time. In the case of the time until the acceptance of a new mode, (1) gives the
probability of trying the new mode before some transpired time, 1.

The corresponding density function (the first derivative of the cumulative
distribution with respect to time) 1s,

) f(0) = dF ()/dt )
and the hazard function is,
h() = f(D/[1 — F(D)] 3)

where h(?) is the conditional probability that an event will occur between time ¢ and
t + dt given that the event has not occurred up to time . In words, the hazard, h(?), gives
the rate at which events (such as trying a new mode) are occurring at time ¢, given that
‘the event has not occurred up to time ¢. ‘

Another important construct in hazard-based models is the survivor function.
The survivor function gives the probability that a duration will be greater than or equal
to some specified time z. That is, the probability that an individual remains in the state
(‘survives’) until time ¢. The survivor function is written as,

S(t)=Pr[T=1] 4)
and therefore is related to the cumulative distribution function by,
S®=1-F(T) &)
and to the hazard function by
| h(r) = f(1)/S () (6)

Graphically, hazard, density, cumulative distribution and survivor functions are
illustrated in figure 2. This figure provides a visual perspective of the equations
presented above.

Turning specifically to the hazard function, its slope has important implications.
Recall that, in the introduction, we talked about the possibility that the probability of
ending a duration may be dependent on the length of the duration. This is referred
to as duration dependence and the first derivative of the hazard function with respect
to time (i.e. the slope of the hazard function) provides this information.

To illustrate this, consider the four hazard functions shown in figure 3. In this
figure, the first hazard function, h(r), has dh,(#)/dt > O for all ¢. This is a hazard that
is monotonically increasing in duration implying that the longer individuals go without
exiting a duration, the more likely they are to exit soon. The second hazard function
has dhy(r)/dt < O for all ¢ and is monotonically decreasing in duration. This implies the
longer individuals go without exiting a duration the less likely they are to exit soon.
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Figure 4. [Illustration of the proportional hazards model.

Proportional hazards models operate on the assumption that covariates (i.e. factors
that affect duration) act multiplicatively on some underlying hazard function.
The proportionality is due to the decomposition of the hazard rate into one term
dependent upon time, and another dependent only on the covariates. This concept is
illustrated in figure 4.

In this figure, the underlying (or baseline) hazard function is denoted ho(?), and this
is the hazard function assuming all elements of the covariate vector, Z, are zero.
The manner in which covariates are assumed to act on the baseline hazard is usually
specified as the function exp(fZ), where B is a vector of estimable parameters.
Therefore the hazard rate with covariates, h(t| z), is given by the equation (as shown
in figure 4),

h(t| Z) = ho(t) exp ( BZ) (7)

Proportional hazards models have enjoyed considerable popularity in a variety
of fields (see Fleming and Harrington 1990). These models can easily handle
right-censored data and they provide a nice interpretation of estimated parameters
(i.e. simple multiplicative effect on the underlying hazard). The assumption of
proportionality, however, limits the application set. For example, if a covariate is car
ownership (zero, non-zero), the quotient of the hazard rate of owners and non-owners
should not vary over time. This restriction can be relaxed to an extent by introducing
class-specific hazard rates: hc(t| 2) = ho. () exp ( Bz) where ¢ = 1,..., C classes.

An alternative approach to incorporating covariates in hazard-based models is the
accelerated lifetime model. This model assumes that the covariates rescale time
directly (i.e. accelerate time) in a baseline survivor function which is the survivor
function when all covariates are zero. Assuming that the covariates act in the form
exp ( BZ), as was the case for the proportional hazards model, the accelerated lifetime

model can be written as,
St1Z) = Solrexp (BZ)] (8)

and it follows that this model can be written in terms of hazard functions as,
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h(t1 Z) = ho[texp (BZ)] exp (BZ) 9)

Accelerated lifetime models have, along with proportional hazards models, enjoyed
wide-spread use (see Kalbfleisch and Prentice 1980). The selection of accelerated
lifetime or proportional hazards models is often determined on the basis of
distributional assumptions (i.e. the assumed distribution of durations). Commonly
used distribution assumptions are discussed below.

4. Distributional alternatives
Two general approaches to implementing hazard-based models are possible. One
is to assume a distribution of duration (e.g. Weibull, exponential, etc.) and the other
is to apply a generalized approach that does not require a distributional assumption.

~ The former approach is called ‘fully parametric’ because a distributional assumption

is being made for the hazard along with an assumption on the functional form
specifying how covariates interact in the model (i.e. the exp (8Z) used in the previous
section). The latter approach is semi-parametric because only the covariate functional
form is specified.

Fully parametric models can be estimated in proportional hazards or accelerated
lifetime forms, and a variety of duration-distribution alternatives are available
including gamma, exponential, Weibull, log-logistic, and log-normal. The choice of
any one of these alternatives can be justified on theoretical grounds, and each
has important implications relating to the shape of their underlying hazard functions.
Three common distributions; exponential, Weibull, and log-logistic, are summarized
below.

The exponential distribution is the simplest to apply and interpret. With parameter
A >0, the exponential density function is,

” f()=Aexp(— A2 (10)
with hazard,
h)=A (11)

Equation (11) implies that this distribution’s hazard is constant and thus the
probability of exiting a duration is independent of the length of time of the duration.
This is a fairly restrictive assumption because the exponential distribution does not
allow any sort of duration dependence to be captured.

The Weibull distribution is a more generalized form of the exponential in that it
allows for positive duration dependence (hazard is monotonic increasing in duration),
negative duration dependence (hazard is monotonic decreasing in duration) or no
duration dependence (hazard is constant in duration). With parameters A > 0 and P > 0,
the Weibull distribution has density function,

f@O=APAD" " 'exp[ — (AD)"] (12)
with hazard,
h(f) = AP (AP ! (13)

In (13), if the Weibull parameter P is greater than one, the hazard is monotone
increasing in duration, if P is less than one it is monotone decreasing in duration, and
if P equals one, the hazard is constant in duration and reduces to the exponential
distribution’s hazard (i.e. A(r) = A). Since the Weibull distribution is a generalized form
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Figure 5. Hazard function distributions (Kiefer 1988).

of the exponential distribution it provides a more flexible means of capturing duration
dependence, but it is still limited due to the monotonicity restriction that it places on
the hazard. In many applications, a non-monotonic hazard may be theoretically
justified.

The log-logistic distribution allows for non-monotonic hazard functions and is
often used as an approximation of the more computationally cumbersome log-normal
distribution. The log-logistic, with parameters A > 0 and P > 0 has the density function,

fO=APA)" 1+ A" (14)

and hazard function,
h(t) = [AP (AP~ '[1 + (AD7) (15)

Note that the log-logistic’s hazard is identical to the Weibull’s except for the
denominator. Equation (15) shows that if P < 1, the hazard is monotone decreasing, if
P = 1, the hazard is monotone decreasing from parameter A, and if P > 1, the hazard
increases from zero to a maximum at time ¢ = [(P — 1)"’)/A and decreases toward
zero thereafter. ‘

Figure 5 shows a comparison of the hazards of the three distributions discussed.
In this figure an exponential distribution is presented along with monotone increasing
and decreasing Weibull distributions, and a non-monotonic log-logistic distribution.
The selection of a distribution is in part guided by reasonable hypotheses on
behavioural response over time. For example, in the case of a new mode, individuals

who are eager to choose it but then lose interest might be represented by the
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log-logistic; those unaffected by advertising and word-of-mouth might be represented
by the exponential distribution.

The alternative to assuming a distribution of the hazard is to use a non-parametric
approach for modelling the hazard. This is convenient when little or no knowledge
of the functional form of the hazard is available. Such an approach was developed by
Cox (1972) and is based on the proportional hazards approach. The Cox proportional
hazards model is semi-parametric because exp ( Z) is used as the functional form of
the covariates. The model is based on the ratio of hazards so that the probability of an
individual, i, exiting a duration at time #;, given that at least one traveller exits at time
t;, is given as,

exp(BZ) [ 2 exp(BZ) (16)
je R

where R; denotes the set of individuals with durations greater than or equal to f;.
The Cox proportional hazard model has been used in a number of fields
(see Fleming and Harrington 1990, Breslow 1974, Elandt-Johnson and Johnson 1983).
Some caution should be exercised when applying semi-parametric models. If the
hazard is generated from a known distribution, and a Cox model is applied, statistical
efficiency will be lost since information regarding the hazard’s distribution is not being
used. This could result in less precise coefficient estimates as reflected by their higher
standard errors. Although this efficiency matter is of some concern, several studies
(e.g. Efron 1977, Oaks 1977) have found the asymptotic variance matrix of Cox model
estimators to be close to those generated from fully parametric hazards models.
Thus, in most cases, Cox models can be applied without serious efficiency losses.

5. Heterogeneity
The assumption implicitly made in proportional hazards models is that the survivor
function (4) is homogeneous over the population being studied. As such, all of the
variation in durations is assumed to be captured by the covariate vector Z. A problem
arises when some unobserved factors (i.e. not included in Z) influence durations.
This is called unobserved heterogeneity and can result in a major specification error

- that can lead one to draw erroneous inferences on the shape of the hazard function

and covariate coefficient estimates (Heckman and Singer 1984, Lancaster 1979,
Gourieroux et al. 1984). Ignoring heterogeneity is the equivalent to leaving out an
important covariate in the exp (3Z) function. Fortunately, a number of corrections
have been developed to account for heterogeneity explicitly. The most common is to
include a heterogeneity term that is designed to capture unobserved effects across the
population, and work with the conditional duration density function. With a
heterogeneity term, v, having a distribution over the population, g(v), and with
a conditional duration density function, f(¢|v), the unconditional duration density
function can be determined from,

f®= f felvgvydv (17)

With this formulation, hazard models can be derived using procedures identical to
those used in the derivation of the non-heterogeneity hazards models.

The problem in operating such an heterogeneity model is that a distribution of
heterogeneity in the population must be selected. There is seldom any theoretical
justification for selecting one distribution over another, and the economics and
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marketing literature is strewn with papers that have used a wide-variety of
heterogeneity distributions, the most popular of which is the gamma distribution
(Hui 1990, Gupta 1991, Greene 1992). The selection of a heterogeneity distribution
must not be taken lightly. The consequences of incorrectly specifying g(v) are
potentially severe and can result in inconsistent estimates as demonstrated both
theoretically and empirically by Heckman and Singer (1984). Fortunately, from
the perspective of choosing among many possible distributions, it has been shown
(Kiefer 1988) that if a correctly specified duration distribution is used, the coefficient
estimate results are not highly sensitive to alternate distributional assumptions of
heterogeneity. To avoid concern about heterogeneity assumptions entirely, Heckman
and Singer (1984) propose a non-parametric representation of heterogeneity that
requires no prior parametric assumptions. Their method has been successfully applied
and appropriate software is available (Vilcassim and Jain 1991).
6. State dependence

State dependence in duration models considers the effect that past duration
experiences have on current durations. Such dependence can capture important
habitual behaviour effects that can be strong indicators of the length of durations.
Heckman and Borjas (1980) provide an extensive discussion of state dependence
issues in hazard-based models.

In most models of duration, three types of state dependence can exist:
duration dependence, occurrence dependence and lagged duration dependence.
Duration dependence simply focuses on the conditional probability of a duration
ending soon, given that it has lasted until some known time. This type of state
dependence is captured in the shape of the hazard function (see figure 5). For example,
a monotone increasing hazard (Weibull with P=1-5 and A=0-86 as shown in
figure 5) has positive duration dependence since the longer the individual’s duration,
the more likely the duration will end soon. Most hazard models (with the notable
exception of the exponential distribution) implicitly embody some form of duration
dependence.

Occurrence dependence captures the effect that the number of previous durations
has on the current duration. For example, individuals that have delayed their departure
from work to home to avoid traffic congestion four times during the past week may
have different current-day departure-delay durations than individuals that have
delayed only once in the past week. The four-delay individuals may have longer or
shorter current-day delay durations because they are more experienced delaying and
perhaps have a better notion of when to leave to optimize their avoidance of traffic
congestion. Occurrence duration is accounted for by including the number of previous
duration occurrences in the covariate vector Z.

Finally, lagged duration dependence captures the effect that the lengths of previous
durations have on current duration. Returning to the example of delaying departure
from work, an individual who has delayed a specified amount of time on a preceding
day may have developed a habitual pattern that would make previous-day delay
duration a good predictor of current-day delay duration. Again, this type of state
dependence is accounted for by including lagged durations in the covariate vector Z.

Great caution must be exercised when including and interpreting state dependence.
The common problem is that unobserved effects (heterogeneity) remain in the model
and are ‘picked up’ in the coefficients of the state variables included in the covariate
vector Z. For example, suppose that income is an important determinant of the length
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of time that individuals delay their departure from work, but a duration model is
estimated without income (i.e. income becomes the equivalent of an unobserved
effect). If a lagged duration variable is included in the model, its estimated coefficient
will be capturing lagged duration effects as well as residual income effects because
income also determines, and is therefore correlated with, lagged duration dependence.
In the presence of such heterogeneity, inferences drawn on state dependence could be
erroneous because non-state effects are being captured.

Elbers and Ridder (1982) have shown that if heterogeneity is properly accounted
for, duration dependence (i.e. the dependence captured by the shape of the hazard
function) can be captured accurately. However, there are really two types of
heterogeneity. One is ‘pure’ heterogeneity which refers to unobserved factors that
are not influenced by previous duration involvement (as discussed above in the
heterogeneity portion of the paper). The second is ‘state dependent’ heterogeneity and
refers to unobserved factors that are influenced by an individual’s previous duration
involvement. This second type of heterogeneity is extremely difficult to distinguish
from occurrence and lagged duration dependence even if heterogeneity is explicitly
accounted for as shown in (17), because such corrective methods typically capture
‘pure’ but not ‘state dependent’ heterogeneity (see Heckman and Borjas 1980).
One relatively simple solution to this problem is to instrument state variables by
regressing them against exogenous covariates and using regression-predicted values as
variables in the duration model.

To summarize, state dependence must be treated with considerable caution
because the potential for serious misspecification is always present. The analyst must
use a carefully thought out statistical approach to incorporate state effects.

7. Other modelling issues

Censoring, as discussed earlier and illustrated in figure 1, is an important concern
in hazard-based model estimation. Right-censoring can be handled in both
proportional hazards and accelerated lifetime models of duration. All that is required
is a relatively minor modification to the likelihood function, and then estimation can
proceed using standard maximum likelihood methods. However, when correcting for
right-censoring, the assumption that is typically made is that individuals censored at
any given time are a representative sample of the individuals continuing their durations
up to the given time. This assumption usually holds, but unusual duration termination
patterns could invalidate the standard right-censoring correction procedure and require
further modification to the likelihood function (see Kalbfleisch and Prentice 1980).

Having data that is left-censored (see figure 1) presents a serious modelling
problem. With left-censoring, the likelihood function soon becomes unwieldy.
The problem becomes one of determining the distribution of duration ‘start times’,
from which the contribution of left-censored observations to the model’s likelihood
function can be determined. In the presence of state dependence and heterogeneity,
accounting for left-censoring is extremely difficult. For further information on the left
censoring problem, the reader is referred to Heckman and Singer (1984) and Fleming
and Harrington (1990).

As a final point, it should be noted that accounting for heterogeneity in a Cox
semi-parametric duration model is conceptually straight forward but computationally
cumbersome. The reason for this is that heterogeneity in the Cox model structure
involves multiple integration over all observations. The numerical integration
required can be prohibitive in large data sets. As a result, most studies that address



74 D. A. Hensher and F. L. Mannering

HAZARDS

0 >

Figure 6. Illustration of a non-monotonic hazard function resulting from logistic
regression analysis.

heterogeneity assume a parametric form of the underlying hazard. A discussion of the
Cox model with heterogeneity is presented in Han and Hausman (1990).

A final modelling concern relates to time-varying covariates, which are covariates
that change during individual durations. Empirically, time-varying covariates can be
incorporated into hazard models by allowing the covariate vector to be a function
of time (i.e. Z(¢) instead of Z) and re-writing the hazard and likelihood functions
accordingly. The likelihood function understandably becomes more complex, but
estimation is still possible and simplified by the fact that time-varying covariates
usually do not change continuously over time (i.e. a few discrete changes can be more
easily handled in the likelihood function). The problem with including time-varying
covariates is that it becomes difficult to interpret coefficients and to separate out
duration dependence (i.e. the shape of the hazard over time). For further information
on time-varying covariates, the reader is referred to Peterson (1976) and

Greene (1992).

8. Alternative modelling methods

Before the development of continuous-time hazard-based models (such as those
described in previous sections), logistic regressions were used extensively in fields
such as biostatistics to analyse duration data. This approach segments time into
discrete intervals and then applies standard logistic regression methods to predict
the probability of individual durations ending in these discrete time intervals.
As illustrated in figure 6, such an approach allows for a quite general form of the
hazard, because it can change, either increasing or decreasing, from one time interval
to the next. However, the hazard is assumed to be constant within each time interval.

When compared to continuous-time methods, the logistic regression approach does
not fare well. This is due to possible statistical efficiency losses resulting from the use
of discrete time. Both proportional hazards and accelerated lifetime approaches have
the capability of utilizing more time-related information than discrete-time techniques.
This is because they consider exact failure times in a continuous-time context as
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opposed to failure times that are defined by a more vague discrete-time interval.
However, some studies have shown that under certain conditions, for example, logistic
regression and Cox, proportional hazards models can produce very similar results
(see Green and Symons 1983, Abbot 1985, Ingram and Kleinman 1989). These
conditions are that the discrete time intervals chosen for the logistic regression must
be sufficiently short and that the exit probabilities (i.e. the probability of durations
ending) during the discrete-time intervals must be small.

Although logistic regression is theoretically inferior in terms of statistical
efficiency, it offers at least two advantages over proportional hazards and accelerated
lifetime approaches. First, handling time-varying covariates is comparatively easy
because changes in covariates can be readily made from one discrete-time period to
the next. Second, tied data, which can be problematic in proportional hazards and
accelerated lifetime models, is not a problem in logistic regression approaches.
Tied data occurs when a number of observations end their durations at the same time.
This can result when data collection is not precise enough to determine the exact
duration-ending times. Thus, duration exits tend to be grouped at specific times. In the
presence of tied data, the likelihood function for proportional hazards and accelerated
lifetime models becomes increasingly complex. Kalbfleisch and Prentice (1980) and
Fleming and Harrington (1990) discuss tied data in the context of continuous-time
models.

In many instances, problems with data ties and the need for time-varying
covariates are considered more severe than possible efficiency losses. Consequently,
discrete-time approaches continue to be developed. A good example is the recent work
of Han and Hausman (1990). They developed a generalized discrete-time hazard
approach that also accounts for possible heterogeneity. Their model provides for a
non-parametric baseline hazard but assumes that heterogeneity is gamma distributed.
The Han and Hausman work clearly shows that discrete-time techniques have their
place in duration analysis.

9. Competing risks

Traditional duration analyses assume that durations end as a result of a single
event. For example, the length of time a traveller stays at home before making a trip
(i.e. home-stay duration) can be assumed to end when a trip is made. However,
multiple duration-ending outcomes may be worthy of consideration because different
outcomes could produce different durations. For the duration of travellers’ home-stays,
the type of trip ending the duration (e.g. shopping, social, work) could affect the length
of duration. This possibility of multiple duration-ending outcomes is referred to as
competing risks.

In the past, many researchers have assumed that a competing risks model with n
possible outcomes had a likelihood function that could be separated into n distinct
pieces. Under such an assumption, estimation could proceed by estimating separate
hazard models for each of n possible outcomes. Unfortunately, separately estimating
competing risks hazards inherently assumes independence among risks. This is
frequently done (e.g. Katz 1986, Gilbert 1992) but may not always be appropriate
because it ignores potentially important interdependence among risks. Treating
competing risks independently is analogous to assuming recursivity in more traditional
simultaneous equations problems (i.e. those problems that can be solved using
three-stage-least squares and similar methods).
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Accounting for interdependence among competing risks is not an easy task, but
has been done by Diamond and Hausman (1984) and Han and Hausman (1990).
Diamond and Hausman develop a model with strict parametric assumptions on the
nature of interdependence. Han and Hausman extend this work by providing a flexible
parametric form of interdependence. Their approach also allows one to test statistically
whether the more common assumption of independence among competing risks
is valid.

10. Review of transport applications

The application of hazard-based duration models in the transport field is
comparatively new, with most work beginning in earnest in the late 1980s. This is
surprising since the number of possible applications of hazard-based models in
transport is quite large.

In applying hazard-based modelling methods to transport problems, it is important
to view them as a reduced form of some underlying behavioural choice process.
Such a view can help guide the selection of covariates, functional form of the
hazard distribution, heterogeneity treatments and state dependence alternatives.
Consideration of reduced forms is an important point and a departure from recent
transport modelling which has tended to focus almost exclusively on complex
behavioural choice processes with correspondingly complex and convoluted
modelling methods. Although this complex behavioural focus centred on dynamic
structural equations will continue as a research theme with a discrete-time focus, the
transport researcher can gain additional insights into the ‘underlying behavioural
processes in continuous time by considering reduced form approaches.

A list of known transport applications of hazard-based studies is presented in
table 1. This table shows the distribution assumptions made and whether or not
heterogeneity and/or state dependence were considered. The studies listed in this table
are discussed briefly below.

Some of the earliest applications of hazard-based models in transport dealt with
accident analysis. Jovanis and Chang (1989) used a Cox proportional hazards model
to look at the probability of accident occurrence on individual trips. They define
duration as the length of trip-time before accident occurrence, with a non-accident trip
being right-censored. Their study of accident reports from a less-than-truckload freight
carrier yielded important results relating to the effect of driver characteristics and
fatigue.

In other work, Chang and Jovanis (1990) provide a general structure for studying
accident occurrence with hazard-based methods. Their paper addresses the many
important theoretical and conceptual concerns involved in such studies. Lin ez al.
(1992) apply hazard-based methods to study the safety impacts of existing
driving-hour regulations on less-than-truckload carriers. Their analysis extended and
considerably expanded the earlier work of Jovanis and Chang (1989). Further work by
Yang er al. (1992) applied a Cox proportional hazards model to study multiple-stop
effects on truckers’ driving risk. This paper provides an excellent demonstration of the
flexibility of hazard-based approaches, and their empirical analysis uncovered many
important relationships that would have been difficult if not impossible to capture
using non-hazard-based analytic methods.

Jones et al. (1991) applied a fully parametric log-logistic accelerated-lifetime
model to study the time required to restore capacity on Seattle freeways after the
occurrence of a capacity-reducing traffic accident. They found that the log-logistic
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hazard was monotone decreasing, indicating that the longer the capacity reduction
lasted, the less likely it was to end soon. This suggested that the Seattle area’s accident
management programme had a problem with severe accidents, and numerous
recommendations were made as to how the shape of the hazard function could be
changed through improved accident management procedures.

Mannering (1991, 1993) applied hazard models to study the time between
individuals’ traffic accidents. In fitting Weibull distributions (Mannering 1993), it was
found that male drivers had a decreasing hazard (i.e. the longer they go without having
an accident, the less likely they were to have an accident soon) whereas females had
a constant hazard, indicating that accident probabilities were independent of ‘the
time that transpired without having an accident. These results suggested fundamental
differences in gender and many interesting behavioural possibilities for these
differences were proposed.

Hazard-based models have also been applied to study the dynamic effects of travel
demand. For example, Mannering and Hamed (1990) applied a Weibull model to
determine the length of time travellers delay their departure from work to avoid traffic
congestion. This model was integrated with a logit-based choice model, thus
demonstrating compatibility with more traditional transport modelling approaches.
Also, Hamed and Mannering (1993) applied a Weibull model to study the time
travellers spend at home between trip-generating activities (home-stay duration) and
Mannering et al. (1992) and Hamed et al. (1992) applied a Cox proportional hazards
model to study the same problem. These studies demonstrate another potentially
important application of hazard-based models. .

Hazard-based models have also been used to study automobile ownership.
Mannering and Winston (1991) fitted a Weibull model to study the time between
households’ vehicle purchases. In other work, Hensher (1992) applied a Cox
proportional hazards model to study the duration of automobile ownership in a
household fleet, recognizing that many of the exogenous variables affecting the
amount of time a vehicle is in a household change over time. Gilbert (1992) used a
fully parametric Weibull duration model, specifying separate hazard functions for
three different events that may end an ownership spell—replacement with a new
vehicle, replacement with a used vehicle and disposal without replacement.

The work of Paselk and Mannering (1993) used hazard models to study vehicular
delay at international border crossings. They used a number of fully parametric
models but found that the log-logistic, with non-monotonic hazard, provided the best
fit. Using data from the US/Canadian highway border crossing in Blaine, WA, their
study of the hazard function revealed an increasing hazard until a vehicular delay of
21 minutes was reached and a decreasing hazard thereafter. This hazard inflection
point indicated a deterioration in system operation at around 21 minutes of delay, and
knowledge of this allowed corrective recommendations to be made.

Both Hensher and Raimond (1992) and Kim and Mannering (1992) estimated
Weibull models while accounting for possible heterogeneity (using a gamma
distribution). Hensher and Raimond studied the time until acceptance of a new tolled
roadway facility and found significant heterogeneity effects. They also proposed a way
of transforming panel data collected and observed in discrete time into a continuous
time data set, so that duration models can be used with the rich set of panel data now
accumnulating in transport. Kim and Mannering included state dependence effects in
their study of the length of individuals’ activity duration (time between successive
vehicular trips) and found heterogeneity effects to be insignificant. Both of these
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studies provide interesting demonstrations of how heterogeneity can be handled in
transport applications.

11. Summary and conclusions

This paper provides an overview of the structure of hazard-based duration models
along with a discussion of application issues. Transport studies that have used
hazard-based models have been briefly discussed with a focus on methods used and
findings made.

It is clear from the material presented in this paper that hazard-based modelling
methods have great potential as a tool to be used in the study of a wide-range of
transport phenomena. It is also clear that transport modellers have not exploited to the
full the potential that hazard-based models offer the profession. This is evidenced
by the fact that comparatively few researchers (see table 1) are involved in the
application of such methods. This is particularly disturbing in the light of the need for
understanding the dynamics of traveller behaviour (i.e. the timing of trip-related
decisions) and the increasing availability of transport panel data which will,
theoretically, allow the study of changes in travel behaviour over time. These types of
problems are ideally suited to the application of hazard-based methods, as other fields
(e.g. economics, biostatistics) have already demonstrated. It is hoped that this paper
will serve as a catalyst for change, and that transport modellers will embrace
hazard-based models as one of the more important modelling tools available to

the profession.
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Foreign summaries

Dans un certain nombre de problémes de transport, on rencontre des variables caractérisées
par le moment de leur occurrence dans un intervalle de temps. Ce sera par exemple le temps qui
s’écoule avant que quelqu’un n’entreprenne un déplacement, le temps qu’un usager laissera
passer avant de se mettre en route vers son travail ou son domicile de fagon a éviter les pointes
de trafic, ou encore la durée qui s’écoule avant qu'un mode de transport nouvellement mis en
service soit effectivement utilisé. Les modeles a durée stochastique sont déja utilisés largement
dans d’autres domaines tels que I’économie et la statistique biologique; leur application aux
phénomenes évoqués ci-dessus parait aller de soi. Le but de l’article est de présenter ces
modeles stochastiques, dans leurs caractéristiques générales, aux utilisateurs potentiels dans le
domaine du transport. A ceite fin, les auteurs se sont efforcés d’éviter tout le jargon technique
qui caractérise trop d’articles et de textes courant sur ce sujet. Ils en attendent que cette
présentation, couplée a ’évocation d’exemples de I’intérét de leur application a des problémes
de transport, contribue 2 un recours plus fréquent a ces modeles stochastiques pour les

probléemes de transport.

Eine Reihe von verkehrsbezogenen Phinomenen hat mit einem Zeitelement zu tun, das
durch die Dauer bis zum Eintritt eines Ereignisses definiert ist. Die Beispiele schlieBen die Zeit
ein, welche vergeht, bevor eine Fahrt unternommen wird, die Zeitdauer, um die der Pendler
seinen Fahrtantritt verschiebt, um einem Verkehrsstau zu entgehen sowie auch diejenige Zeit,
bis ein neu eingefiihrtes Verkehrsmittel genutzt wird. Ereignisorientierte Zeitmodelle die sich
einer breiten Anwendung in nicht verkehrlichen Bereichen erfreuen (z.B. Okonomie,
Bio-Statistik), stellen eine einleuchtende Wahl zur Modellierung solcher Verkehrsphinomene
dar. Ziel dieses Artikels ist es, ereignisorientierte Modelle allgemein verstiandlich fiir Personen
darzustellen, die an Verkehrsproblemen interessiert sind. Deshalb wird jede Anstrengung
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unternommen eine iiberzogene Fachsprache zu vermeiden, die aktuelle Artikel und Texte iiber
diesen Gegenstand auszeichnen. Wir erhoffen uns von einer solchen Darstellung, zusammen
mit einer Ubersicht iiber bereits existierende Anwendungen solcher Modelle, eine zunehmende
Nutzung von ereignisorientierten Zeitmodellen im Verkehr.

Varios fenémenos asociados al transporte deben tratar con el tiempo que transcurre hasta la
ocurrencia de un evento. Ejemplos incluyen el tiempo transcurrido hasta que se realiza un viaje,
la longitud de tiempo que un oficinista demora su partida del hogar para evitar la congestién de
la maifiana, y el tiempo que transcurre hasta que un medio recien introducido se comienza a
utilizar. Los modelos de duracién basados en obstdculos, que han gozado de amplio uso en
varios campos distintos al transporte (ej. economia, bio-estadistica) constituyen una obvia
eleccion para modelar este tipo de fenémenos. El objetivo de este trabajo es presentar en general
estos modelos a individuos interesados en problemas de transporte. Con este fin se han hecho
ingentes esfuerzos para evitar el enfoque (casi coloquial) para iniciados que caracteriza los
articulos y libros sobre este tema. Se espera que esta presentacion, junto a una revisién de las
aplicaciones existentes en transporte, lleve a una mayor utilizacién de este tipo de modelos en

el drea.
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Editorial suggestions for further reading
CHANG, H.-L., and JovaNis, P. P., 1990, Formulating accident occurrence as a survival
process. Accident Analysis and Prevention, 22 (5), pp. 407-419.

A conceptual framework for accident occurrence is developed based on the
principle of the driver as an information processor. The framework underlies
the development of a modelling approach that is consistent with the definition of
exposure to risk as a repeated trial. Survival theory is proposed as a statistical
technique that is consistent with the conceptual structure and allows the exploration of
a wide range of factors that contribute to highway operating risk. This survival model
of accident occurrence is developed at a disaggregate level, allowing safety researchers
to broaden the scope of studies which may be limited by the use of traditional
aggregate approaches. An application of the approach to motor carrier safety is
discussed as are potential applications to a variety of transportation industries.
Lastly, a typology of highway safety research methodologies is developed to compare
the properties of four safety methodologies: laboratory experiments, on-the-road
studies, multidisciplinary accident investigations, and correlational studies.
The survival theory formulation has a mathematical structure that is compatible
with each safety methodology, so it may facilitate the integration of findings across
methodologies. (Authors)

Jovanis, P. P., and CHANG, H.-L., 1989, Disaggregate model of highway accident
occurence wing survival theory. Accident Analysis and Prevention, 21 (5),
pp- 445-458. h

The analysis of discrete accident data and aggregate exposure data frequently
necessitates compromises that can obscure the relationship between accident
occurrence and potential causal risk components. One way to overcome these
difficulties is to develop a model of accident occurrence that includes accident and
exposure data at a mathematically consistent disaggregate level. This paper describes
the conceptual and mathematical development of such a model using principals of
survival theory. The model predicts the probability of being involved in an accident at
time ¢ given that a vehicle has survived until that time. Several alternative functional
forms are discussed including additive, proportional hazards and accelerated failure
time models. Model estimation is discussed for the case in which both accident and
non-accident trips are included and for the case with only accident data. As formulated,
the model has the distinct advantage of being able to consider accident and exposure
data at a disaggregate level in an entirely consistent analytic framework. A conditional
accident analysis is undertaken using truck accident data obtained from a major
national carrier in the United States. Model results are interpretable and generally
reasonable. Of particular interest is the fact that segmenting accidents into several
categories yields very different sets of significant parameters. Driver service
hours seemed most strongly to affect accident risk: regularly scheduled drivers
who take frequent trips are likely to have a reduced risk of an accident, particularly

if they have a longer (greater than eight) number of hours off-duty just prior to a trip.
(Authors)
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