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Generation of Synthetic Daily

Activity-Travel Patterns

RyuicH1 KitaAMURA, CYNTHIA CHEN, AND RAM M. PENDYALA

Microsimulation approaches to travel demand forecasting are gaining
increased attention because of their ability to replicate the multitude of
factors underlying individual travel behavior. The implementation of
microsimulation approaches usually entails the generation of synthetic
households and their associated activity-travel patterns to achieve fore-
casts with desired levels of accuracy. A sequential approach to generat-
ing synthetic daily individual activity-travel patterns was developed.
The sequential approach decomposes the entire daily activity-travel pat-
tern into various components, namely, activity type, activity duration,
activity location, work location, and mode choice and transition. The
sequential modeling approach offers practicality, provides a sound
behavioral basis, and accurately represents an individual’s activity-
travel patterns. In the proposed system each component may be esti-
mated as a multinomial logit model. Models are specified to reflect
potential associations between individual activity-travel choices and
such factors as time of day, socioeconomic characteristics, and history
dependence. As an example results for activity type choice models esti-
mated and validated with the 1990 Southern California Association of
Governments travel diary data set are provided. The validation results
indicate that the predicted pattern of activity choices conforms with
observed choices by time of day. Thus, realistic daily activity-travel
patterns, which are requisites for microsimulation approaches, can be
generated for synthetic households in a practical manner.

Microsimulation of the behavior of a household or an individual is
drawing attention as a new approach to travel demand forecasting
(1). Microsimulation can replicate the behavior of complex sys-
tems or processes and is therefore suited for the representation of
travel behavior, which is a complex behavior. The factors that
make travel behavior complex include the multitude of contribut-
ing factors and decision rules involved, constraints that govern the
behavior, interpersonal interactions, multiple planning horizons,
and complexity of activity-travel decision making as a scheduling
problem (2). Microsimulation is an effective approach to such a
complex phenomenon that facilitates its practical, yet realistic,
representation,

Achieving desired levels of accuracy in the outcome of travel
demand forecasts produced by microsimulation of household behav-
ior may require a large sample of households. This may happen
when high levels of spatial or temporal resolution of the outcome are
required, sample households do not have a desirable geographical
distribution, demand by small population segments is desired, or a
high level of accuracy is desired. In such instances the number of
households available in the data set at hand may not be sufficiently
large. As a result the generation of synthetic households may be
required. When the microsimulation expects daily travel patterns of
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household members as input data, the generation of synthetic daily
travel patterns will be required.

An approach to the problem of synthetic travel pattern generation
is presented in this paper. The proposed synthetic travel pattern
generator has a sequential structure and can be decomposed into
components to which certain aspects of observed activity-travel
behavior correspond, thus establishing a link between mathematical
models and observational data. The model components are each rel-
atively simple and are estimated by commonly adopted estimation
methods and with existing data sets.

PROBLEM DESCRIPTION

Consider a household member, i, whose daily activity-travel pattern
can be characterized as

X, T,L)
= (Xi09Xih LR ’Xin;T;D)T;l’ P e 5]7;1; L;Dv Lil’ CEEE yLm) (1)
where
X; = type of jth activity pursued by individual i,

T; = duration of jth activity pursued by individual i,
L; = location of jth activity pursued by individual i (if
activity is travel, then L; refers to destination of
trip j; in this case L; = L, ,),
n = number of activities involved in individual i’s
daily activity-travel pattern, and
(X0, Tio, L) = initial condition.

=

Note that travel is included here as one of the activity types. For sim-
plicity, travel mode, which may be stored in another vector, say M,
is not included in the discussion here. The mode choice component is
discussed in a subsequent section of this paper.

The development of a synthetic daily activity-travel pattern
implies the generation of vectors X,, T;, and L, given the following:

® Attributes of individual i,

* Attributes of the household to which i belongs,

® Residence and work location of i,

¢ Demographic and socioeconomic characteristics of the region,

¢ Land use characteristics of the region, and

¢ Transportation network and travel time characteristics of the
region.

Because it is most likely that synthetic activity-travel patterns will
be generated for synthetic individuals and households, the first three
items will make up synthetic data. Generating synthetic individuals
and households, however, is beyond the scope of this paper [a pre-
vious report discusses the generation of synthetic households (3)]. It
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is assumed here that all personal and household attributes, as well as
work location, are known for i. These last three items will consist of
projected values in cases in which synthetic activity-travel patterns
are generated for forecasting.

ACCUMULATED KNOWLEDGE

The following discussions offer a brief summary of what is known
about n, which is also a variable to be determined, and each of the
three vectors, X,, T;, and L,. It is possible that additional information
on time use is available from the literature. This literature is not well
known in the transportation field and needs to be explored further in
the future.

Number of Activities Per Day: n

The total number of activity episodes captured in time use surveys
tends to be 20 to 25 per person per day, including trips. In the trans-
portation field. the average number of trips is between 3 to 5 per per-
son per day. It is known that the number of trips captured varies
greatly depending on the survey methodology. It is well established
that total trip generation is associated with the demographic and
socioeconomic attributes of the traveler.

Activity Type: X;

There are certain regularities in the sequence with which individuals
engage in different types of activities. For example, one may antici-
pate that the sequence of activities performed before leaving home
for work or after coming back home from work is fairly uniform
across individuals. The literature in time use analysis needs to be
explored to determine tendencies for activity sequences involving
both in-home and out-of-home activities (4).

Kitamura (5) examined the sequence of trip purposes by using stan-
dard trip diary data from Detroit, Michigan. The trip purpose was used
to identify the primary out-of-home activity type at each destination
location. The analysis examined how out-of-home activities were
sequenced in a home-based trip chain, that is, the home-to-home
series of trips that involve one or more stops. The results indicated that
activities of a more mandatory nature tend to be pursued first in a trip
chain. The sequencing tendencies indicated the following hierarchy:

Work and school, work related;

Chauffeuring;

Personal business (e.g., banking, dental, and medical);
Shopping; and

Social and recreational.

The presence of the same sequencing hierarchy was later found for
activities throughout the day (6,7). Another important tendency is
that activities pursued in the same trip chain tend to be similar (5).

Activity Duration: T;
Several studies have investigated the duration of activity engage-

ment. In a semi-Markov process model of trip chaining, Lerman (&)
used gamma distributions to represent the duration of sojoumns at
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destination locations. Survival models have recently been applied to
the time dimension in activity-travel patterns (9—1/1). These studies
are typically based on the simplifying assumption that the durations
of successive activities are independent.

Activity duration has been examined from the viewpoint of
resource allocation. Kitamura et al. (12) presented a theoretical
model in which the duration of an activity episode was analytically
derived while assuming that the total daily activity pattern is opti-
mized and that each activity episode has a logarithmic utility func-
tion. The model was estimated with a time use data set from the
United States. Although the model is based on the assumption that
daily time use is optimized as a whole, the resulting model applies
to individual activity episodes. Golob and McNally (/3) examined
the allocation of time to different activity types using a structural
equations model system. This approach facilitates the inference of
causal relationships among activities of different types.

Critical in the analysis of activity duration is the correlation
across the duration of respective activity episodes. Because the total
amount of time available is fixed at 24 hr a day, negative associa-
tions can be expected. In addition, the duration of each episode is
also a function of n, the total number of episodes. The interrelation-
ships among the durations of different types of activities and the
number of activities, n, merit further exploration.

Activity Location: L;

Nonhome activity locations traditionally have been estimated by
using the gravity model of spatial interaction. The multinomial logit
model of destination choice can be viewed as a special case of the
gravity model family. In principle, these models depict that, all
other things being equal, more intense interaction exists between a
pair of locations that are closer to each other and that the intensity
of the interaction is positively related to the attraction level of the
destination and the number of trips initiated at the origin.

One important issue is the characterization of location or destina-
tion choice for non-home-based trips, that is, trips whose origin
and destination are both nonhome. For home-based destination
choice underlying a simple trip chain involving only one stop (i.e.,
home-activity-home), the only spatial element to be considered is the
separation between the destination and the home base. This does not
hold true in the case of non-home-based choice. For example, con-
sider the choice of a shopping location on the way home from work;
in this case both the home location and the deviation from the regu-
lar commute route would be important considerations. Kitamura and
Kermanshah (7) constructed a non-home-based destination choice
model that included both the usual origin-to-destination travel time,
1, and the destination-to-home travel time, ¢;;, in a multinomial logit
choice model. Their estimation results clearly indicated that r; and
t,, are equally important for non-home-based destination choice.
This finding is readily applicable to the generation of synthetic
activity-travel patterns.

Travel Mode: M;

There are numerous studies on travel mode choice. Most studies,
however, are seriously limited because they are trip based, that is,
they analyze each trip separately in isolation from other trips. Con-
sider the choice of commuting by car because a car is needed for
work. Then this mode choice behavior cannot be explained by solely
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examining the home-to-work commute trip and comparing the
attributes of the travel modes available for that trip.

One of the critical requirements in synthetic pattern generation is
observation of the constraints imposed on the transition between
travel modes. For example, transition from public transit to driving
alone is usually not possible unless the transition takes place at the
home or work base where a private car is placed or at a special facil-
ity such as a park-and-ride lot. For a trip chain that originates and
terminates at the home base, the sequence of travel modes tends to
be governed by the boundary condition that the mode of the first trip
from home is identical to that of the last trip to home. These regu-
larities and tendencies serve as a set of constraints in the generation
of activity-travel patterns.

MODELING CONSIDERATIONS

There are two broad classes of approaches to the generation of syn-
thetic activity-travel patterns: sequential (incremental) approaches
versus simultaneous (holistic) approaches. The former adopt rules to
generate, one by one, the activity that will immediately follow, given
the history of activity generation so far, The latter approaches, on the
other hand, deploy behavioral paradigms that are each concerned
with the entire daily activity-travel pattern.

One paradigm for the simultaneous approaches is that an individ-
ual with given attributes has a probability vector that depicts the like-
tihoods with which he or she will exhibit respective activity-travel
patterns. A study by Pas (/4) is readily applicable to the opera-
tionalization of this paradigm. Another paradigm is utility maxi-
mization, in which an individual chooses that activity-travel pattern,
from among a set of all feasible patterns, that offers the maximum
utility. Studies based on this assumption include those by Adler and
Ben-Akiva (15), Recker et al. (/6), and Recker (17). The two para-
digms can be integrated to produce probabilities for alternative daily
activity-travel patterns.

The simultaneous approaches have theoretical elegance. They can
be expected to be more sensitive to parameters describing the travel
environment than are sequential approaches. In addition, simulta-
neous approaches can better reflect an individual’s travel planning
effort. Despite the advantages offered by simultaneous modeling
approaches, a sequential approach is proposed in this study. There
are three major reasons:

e Practicality. One important advantage of sequential approaches
is the ease of implementation that they offer. When viewed as an opti-
mization problem, daily activity-travel behavior is very complex (2).
Exact formulation of this behavior produces an overwhelmingly
complex mathematical problem. The size of the problem at each step
is much smaller in sequential approaches because a daily pattern is
synthesized incrementally.

® Behavioral basis. Sequential approaches do not lack a behav-
ioral basis. For example, when proposing the paradigm of satisficing,
Simon (/8) noted that a person is not capable of enumerating all
possible alternatives or discerning minute differences among them.
Furthermore, a person often will not have complete information asso-
ciated with all alternatives. As such, even though certain travel
choices may be considered simultaneously, it may be argued that
people sequentially process “information elements” to reduce the
size and dimensionality of the problem.

o Contexts of synthetic activity-travel pattern generation. Syn-
thetic activity-travel patterns are usually generated to represent
baseline travel characteristics of the population under prevailing
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conditions. In this context, sequential model systems offer policy
sensitivities that are consistent with the objectives of synthetic
pattern generation.

The sequential approach adopted in this paper is based on the
identity that, given n, the X-T-L triple can be expressed as

Pr(X,T,L]
= Pr[Xyl’Xin e 9Xm;T;’l97:2! L vT;n;L:l’an, e ’Liu]
= PriX,, T, LlXo, Xy o+ X
LT ... T Ly Lig, ..o L]
XPr{ X oty Lpets Lyt [ Xty Xz oo 0 X
T;lvT;b e ’7-;.n~2;Li|iLi2! e 7Ly,n-2]
X ..o x PrX,, T, Ly] (2)

Each probability on the right-hand side can be formulated as a model
for activity type, location, and duration, given the past history of
activity and travel. In adopting the sequential approach, the joint prob-
ability of an X-T-L triple needs to be decomposed into sequential
elements. The following decompositions are possible:

Pr[xl’ ijs t/'Xu I £ij- l’ ij- l]
= Pr[L,,! »T Xy .,T,, I,L., Ny
(T Xt Tt L P PAXG K T L]
, i u’ /l’ ') 1’ ij- l]
Pr[x,lL.,,X,,l,T,, WL PHLX, 0T L]
=.. 3)

and so forth, where X, ;_, is equal to (X5, X;s, . . . , X; ;1) and so forth.

Because all permutations of X, T, and L; lead to the same joint
probability, the model’s replication capability should not depend on
which permutation is adopted. Therefore, that permutation that can
be theoretically supported or that offers the most modeling flexibility
and sensitivity can be selected.

EXPLORATION OF POTENTIAL ASSOCIATIONS

As noted previously, knowledge about the characteristics of activity-
travel behavior has been accumulated. A few salient aspects of
activity-travel behavior that merit inclusion in a synthetic generator
are outlined in this section.

® History dependence. History dependence has been found to be
prevalent in studies of activity type choice (5,/9) and location
choice (20-24). Although it is also likely that history dependence is
prevalent for activity duration choice, the knowledge of the history
dependence in activity duration appears to be extremely limited.

¢ Time-of-day dependence. Activity engagement is strongly
dependent on the time of day. Tabulations of time use data (25) indi-
cate surprising homogeneity in activity engagement across individ-
uals. This is partly institutional (e.g., work and school) and partty
physiological (e.g., meals and sleeping). The time-of-day depen-
dence of activity engagement can be represented by formulating
engagement probabilities as time-dependent functions (6).

® Spatial and temporal constraints. Different activities have dif-
ferent levels of constraints in terms of (a) engagement, (b) duration,
(c) location, and (d) timing. Higher levels of engagement and dura-
tion constraints are typically associated with work and school
(mandatory) activities. It may be assumed that more flexible activi-
ties are organized around these constrained activities. Some types of
activities may have tight constraints when they are pursued with
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prior commitment, for example, a medical appointment. In general,
constraints associated with activity engagement vary significantly
depending on institutional and situational factors (e.g., store hours),
prior arrangement and commitment, as well as the type of activity.
An issue in this effort is whether constraints associated with each
activity should be explicitly considered and modeled or treated
as random elements. Considering data availability, only the latter
approach is feasible. However, constraints on regular events such as
work and school merit explicit consideration.

® Planned versus unplanned activities. Some activities are rou-
tine, some are planned ahead, yet some are unplanned and are pur-
sued in response to unanticipated events. It is desirable that the
degree of planning be represented when synthesizing travel patterns
because it allows for the analysis of transportation policy impacts on
an individual’s travel plans. In the context of synthetic pattern gen-
eration, however, representing the level of planning in activity
engagement is of lesser importance, given that the constraints asso-
ciated with activities are well understood. Also. data availability is
an issue. On the basis of these considerations, the model system in
this study does not explicitly incorporate the degree of planning.

¢ Travel time budget. History dependence in L, as well as in T;
would arise if a traveler allocates a certain amount of time for trav-
eling. This leads to the notion of travel time budgets (26). There
have been disputes on whether individuals have a fixed time budget
that is invariant across individuals. However, more recent resulis
offer evidence that when the duration of a trip is reduced, then a
portion of the time saved tends to be used to travel more (13,27).

o Prism constraints. The spatial expanse that is accessible to an
individual for activity engagement is determined by the speed of
movement and the amount of time available. Hagerstrand (28)
defined this expanse in the time-space dimensjon as the time-space
“prism.” The prism contains all possible locations where activities
can be engaged and defines the amount of time available for activi-
ties at each location within it. Kondo and Kitamura (29) adopted the
prism concept in the analysis of trip chaining behavior. Beckmann
et al. (26) used the concept to define accessibility measures. The
prism concept is important because it defines the state space for the
evolution of location choice.

¢ Trade-off between activity duration and travel time. The trade-
off between the duration of activity and the time spent reaching the
activity location is also important. One may choose to visit a nearby
opportunity and spend more time on the activity there or visit a
farther but better opportunity and spend less time there. This con-
sideration is adopted by Kitamura et al. (/2) in the formulation of
time-utility functions. The model in this study accounts for this by
making the probability of L, conditional on T}

® Modal continuity, permissible transitions, and time-of-day
dependence. Despite the voluminous studies on travel mode choice,
little is known on history dependence and time-of-day dependence
of travel mode choice. Modal continuity and modal transition have
rarely been addressed in the literature [a rare example can be found
in the report by Kondo (23)]. In general, the travel modes used by
an individual in a series of trips tend to be governed by the con-
straints surrounding modal transitions. In addition, because both
transit and highway levels of service vary along the time of day, it
is likely that mode choice is time-of-day dependent.

® Relationships among travel choices. It is now widely recog-
nized that various dimensions of travel behavior are related to one
another. For example, activity type choice influences destination
choice because a traveler would choose a destination that fulfills the
specific activity need. Similarly, interrelationships exist between
destination choice and mode choice, activity type choice and depar-
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ture time choice, and departure time choice and activity duration.
The sequential model system developed in this study explicitly
incorporates interdependencies among travel choice dimensions in
synthesizing activity-travel patterns.

MODEL FORMULATION

For X;; that is not travel, the following decomposition of the X-T-L
triple may be adopted:

Pr[Xi/ , 7:'/, L, ‘Xi,/—l ' i‘j—l f I:r._/Al]
= Pr[Lii (Xij ) T;/ » X.,-l ’ Ti,H s Z‘i.j~l]
. PT[TL |Xifs X~r.f~l s f;’./‘fl s i‘!./~]]
: PT[X:’/ IX./~| , f.,»l > Zi.j—l] 4)

In this formulation an activity type is selected first; given the type,
its duration is determined; and finally, a location is chosen given
the type and duration. Each of these decision elements is assumed
to be dependent on the past history of behavior. This formulation is
based on the view that activity engagement is the most fundamen-
tal decision that drives duration and location choice. Although this
may not hold true under all conditions, it may be regarded as a
typical activity engagement decision process.

When X;; is travel, the following decomposition would be more
appropriate:

Pr[Xu ) 7:!’ L:,,Xu‘lv i,}—l7 I:i,l—l]
= P(T,|X,,L,, X, .., T, ., L )]

PrL X, X T L)
Pr(X, X, T L] 5

Namely, the destination, L;, is determined before travel time, T
This reflects the view that travel time cannot be determined before
destination and mode are determined.

Overview of Synthetic Travel Pattern Generator

The components of the synthetic travel pattern generator are as
follows:

® Activity-type choice models
—~Home-based and non-home-based
—~Workers and nonworkers

® Activity duration models

~Workers and nonworkers

—By activity type

Activity location choice models

~Home-based versus non-home-based

—Workers and nonworkers

—By activity type

Mode choice and mode transition models

—Home-based and non-home-based

® Initial departure timing models
~Workers and nonworkers

® Initial location models
—Workers and nonworkers

where “worker” refers to an individual who is employed, either full-
time or part-time, or a student. It is possible for a part-time worker’s
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daily activity-travel pattern to not include a commute trip. At this
stage model components have been developed for weekdays only.
The activity types used in the models are work, work-related,
school, return to work, social and recreation, shopping, personal
business, eat out, home (transient), and home (absorbing).

Activity-Type Choice Models

Activity-type choice models are concerned with Pr[X,-,»lX,-, imts T. -1
L ;-1]. These models probabilistically determine the next activity
type to be engaged. Two types of models, home-based models and
non-home-based models, are developed. The former is for an
out-of-home activity that follows an in-home sojourn, whereas the
latter is for an activity, whether in-home or out-of-home, that
follows an out-of-home sojourn. Although the latter includes
“in-home activity” as an alternative in the choice set, the former
excludes it. It is to be noted that the home-based versus non-home-
based distinction does not refer to the location where the choice is
made. Both types of models are developed for workers and non-
workers separately. The history dependence of activity type transi-
tion is represented by formulating the probability of an actmty type
as a function of the series of activities so far engaged, X, ; -1, the time
that has been allocated to them, T; ;-1» and the current location, L; ;_,.

Activity Duration Models

Consider an activity type, a. Given X;; is equal to a, T;; will have a
probablhty distribution function whose parameters are functlons of
t, %21, Tyj1s Lijy, and Z, as follows:

Pr(T, < qlX,
_aXl/le;/I’ ljl’Z]

—G(qXI/hT:llv lIl’Z) 420,a=1,2,...,k (6)

where ¢ is the time of day when the (j — 1)th activity ended and Z;is
the vector of person attributes and other explanatory variables. G, is
a distribution function. Two sets of activity duration models are
developed: one for workers and the other for nonworkers. The same
activity classification scheme used in the activity-type choice mod-
els is adopted, and models are developed for ali activity types except
absorbing home (person returns home for the day).

Some distribution functions may be preferred over others for
activity duration. For example, let an activity comprise n task ele-
ments, and let task completion times be identically and indepen-
dently distributed with a negative exponential distribution for all
task elements. Then the distribution of the duration of this activity
is a type-n Erlang distribution. Other distributions, including nega-
tive exponential, Weibull, and log-normal distributions, have gene-
ses that offer interpretations suitable for activity duration. The
Weibull distribution is used in this modeling effort because of
its goodness-of-fit and intuitively appealing interpretation in the
context of activity duration modeling.

Activity Location Choice Models

The problem here is to determine the probability that the location of
the jth activity is g, given the type and duration of the actlvxty, the
completion time of the (j - 1)th activity, ¢, X -1 T j-1>and | -1 The
models are formulated for all activity types, except in-home activity.
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Home-Based Models

The home-based location choice models take on a form that is
similar to conventional destination choice models:

PrL, = g, X, T, X, .. T L ,,Z A S
= Pr{L,; = gl h.X,=a,T,;=4.Z,AS5]
=H,((g:t,h,q,Z,A,S) @)
where
h; = residence zone,
A~ = vector of attractiveness measures of alternative locations, and
S = matrix of origin-destination travel times.

Note the assumption that the location choice is conditionally inde-
pendentof X, ., T;,_,, and I, ,, given ¢, h; (which is equal to L, ;_),
X; (which is equal to a), and T;; (which is equal to g).

Non-Home-Based Models

As will be discussed later, a travel mode is assigned in the procedure
before the selection of destination location for a trip whose origin is
not the home base. Let M, be the mode of the trip made to the jth
activity location. With the assumption that destination choice is con-
ditionally independent of M, ,_,, as well as X, T;;_,, and L, ;5,
given ¢, h;, L;;_, (which is equal to f), X;; (which is equal to a), T;
(which is equal to g), and M;; (which is equal to r),

Pr[LAj =g’h, X T MI]?XI/ 197:1—1’l~‘u lvMi,j—]yZivA7§]

e dijs

= Pr[Lij = glt,h,-,X,] = aJ:, qy ' f,M,'_j_l =r, Z,-,A,g]
=Q.(g:t.h.q. f,1.Z,A,8 ®

Mode Choice and Mode Transition Models

A travel mode is assigned to each trip by using the following pro-
cedure: (a) the travel mode for the first trip in each home-based trip
chain is determined (home-based models), and (b) a mode transition
matrix is developed and applied to determine subsequent travel
modes on a trip-by-trip basis (non-home-based models). The model
system incorporates a dummy variable that indicates whether a pri-
vate car is parked at the workplace, which makes the probability
very high that a car will be used for a trip originating from the work-
place. Models are developed for workers and nonworkers sepa-
rately. Travel modes are grouped into automobile driver, automobile
passenger, public transit, and bicycle and walk.

Home-Based Models

The home-based models incorporate accessibility indexes for the
residence zone and, for workers, accessibility indexes for the work
zone. Accessibility indexes by mode are defined as the “log-sum”
variables of the utility functions of the destination choice models.
Highway and transit travel times and distances to destination zones
are also incorporated. Also included in the models are descriptors of
the destination zone (e.g., percent retail) and the time of day when
the trip starts. The models take on the following form:

Pi{M, =

ijy Mijy 4Xi -1y 1/ 17[‘i,j—lvMi.j-l’2ivA1§]
Pr[M' _r|t hnX =a,T; = ‘IsLijzvai.j—thAaS] 9

ij9

[0}
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where H, _, is defined as A, , , = Hijor,Hizjy, .. H,y, Y, with m
being the number of modes and H, ;. being equal to 1 if Hi
contains mode r (for r = 1.2, , .. »m) and H,, ,_, being equal to 0

otherwise.

Non-Home-Based Models

The non-home-based models are transition models that determine the
probability that a certain travel mode will be used for a trip given
the mode of the previous trip. Additional explanatory variables in-
clude descriptors of the destination zone, car-packed-at-work dummy
(for workers), and the time of day. The non-home-based mode choice
models are trip-end models that are applied before destination
location is determined. They can be summarized as follows:

Pr[Mu = rlhn)(:/’ 7:/~X:./—l~i:.r—l’l‘~l.f‘l’ .
=PriM, = s, how,, . X, = a, T,=q, M, _ =u,
H.,..Z,A43) (10)

where w, | is the car-parked-at-work dummy. As noted earlier, non-
home-based mode choice models are transition models and replicate
modal continuity conditions in the data set,

Initial Departure Timing Models

Initial departure timing models may be viewed as the duration
models for the first activity of the day starting at, say, 3:00 a.m.,
which is typically an in-home activity (most probably, sleeping).
In this study models are estimated for workers and nonworkers
separately and are applied in synthetic pattern generation to those
sarple individuals who are at home at 3:00 a.m.

Initial Activity Type and Location Models

Initial activity type and location models determine the type and
zonal location of the first activity. As noted earlier, this is usually an
in-home activity and the location is the residence zone. Data sets
thus do not typically offer rich information (in terms of variation
across individuals) for these models. As a result they tend to be
simple frequency models without many explanatory variables.

Work Location Models

Work location models are the equivalent of home-based work trip
distribution models. The probability that a worker commutes to a
certain zone is formulated as a function of network automobile
travel times, zonal attributes, and person and household attributes.
The models are formulated as multinomial logit models.

SAMPLE ESTIMATION RESULTS

This section provides sample results of the estimation of activity
ype choice models and activity duration models for work activity
or workers and social-recreation activity for workers and non-
vorkers. For brevity, the presentation of results has been limited to
wo modules of the generator and two activity types. This section
s intended to provide a representative indication of the perfor-
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mance of the model for mandatory (work) and discretionary
(social-recreation) activities and for workers and nonworkers, thus
covering a variety of behavioral conditions. The 1991 travel diary
set of the Southern California Association of Governments is used
for model estimation and validation purposes. The data set pro-
vides a total of 136,640 trip records for 32,515 individuals. As
such, it provides rich information with a sufficient sample size in
each population segment considered in this effort. Sample estima-
tion results for each of the two modules are summarized in the
subsections that follow.

Activity Type Models

The data set was randomly divided into two subsets; one subset was
used for estimation purposes and the other was used for validation
purposes. Multinomial logit models of activity type choice were esti-
mated by using standard maximum-likel ihood methods. Estimation
and validation results are presented in Tables 1 and 2, respectively.

Table 1 presents estimation results for six activity type choice
models. They are home-based and non-home-based models for
workers (return to work, social-recreation) and home-based and
non-home-based models for nonworkers (social-recreation).

Models estimated for workers set work as the reference alterna-
tive (utility is set equal to 0), whereas models for nonworkers set
shopping as the reference alternative, Explanatory variables include
socioeconomic characteristics of the person, dummy variables of
time of day, and lagged dependent variables of history dependence.
Those time periods that are not represented in the model are used as
reference periods.

The models indicate the time-of-day dependence of activity type
choice. For example, in the home-based model for workers, the
“return to work” activity peaks at about 11:30 a.m. to 1:00 p.m.; this
may be explained by workers having lunch and then returning to
work. Social-recreation activities peak between 7:30 and 9:30 p.m.,
as evidenced by the larger coefficients associated with dummy vari-
ables representing evening hours. During the early morning, coeffi-
cients for social recreation are less than those for work, indicating
that the work activity peaks during that period.

Socioeconomic variables also play important roles in determin-
ing activity type choice. The work and social recreation activity
models presented in this paper do not include socioeconomic vari-
ables because they were found to be statistically insignificant at the
0.05 level. However, other activity types including personal busi-
ness, shopping, eating out, and school (not shown in this paper) were
significantly influenced by socioeconomic characteristics,

History dependence is tepresented by a lagged dummy variable,
which takes on a value of 1 if the activity is performed earlier in
the day and 0 otherwise. History dependence effects are found to be
statistically insignificant for the return to work but are found to be
significant in explaining workers’ social-recreation activity engage-
ment. The coefficients have negative signs indicating that if a social-
recreation activity was pursued previously in the day, then there is
a reduced likelihood of repeating the activity. History dependence
was also found to be significant for other activity types, notably
shopping and personal business (not presented in this paper).

Table 2 presents validation results for the six models for which
estimation results were presented in Table 1. The validation results
are presented by time of day over a 24-hr period for return-to-work
and social-recreation activities. For each time period the actual fre-
quency of each activity type and the expected frequency (calculated
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TABLE 1 Sample Estimation Results for Activity Type Choice Models

HB for Workers/Students HB for Non-workers/Non-students NHB for Workers/Students NHB for Non-workers/non-students

Return to Work Return to Work Return to Work Return to Work
Variables Estimates Not Applicable Variables Estimates Not Applicable
Constant -0.32(-1.2) Constant -1.56 (-2.4)
D(3-6:30am) -0.82 (-0.6) D(7:30-8:30am) 1.05 (1.5)
D{6:30-7:30am) -2.01 (-1.7) D(8:30-9:30am) 1.67(2.4)
D(7:30-8:30am) -1.35(-1.6) D(9:30-10:30am) 2.94 (4.4)
D(8:30-9:30am) -0.88(-1.2) D(10:30am-12:30pm) 383(59)
D(9:30-11:30am) 0.87(2.2) D(12:30-2:30pm) 4.75(7.3)
D(11:30am-1:30pm) 2.52(8.2) D(2:30-4:30pm) 3.91 (6.0)
D(1:30-3:30pm) 1.49 (4.9) D(4:30-6:30pm) 1.91(2.9)
D(3:30-5:30pm) -0.10 (-0.3) D(6:30-8:30pm) 2.13(3.0)
D(5:30-7:30pm) -0.78 (-2.5) D(8:30-10:30pm) 3.19(3.6)

D(10:30pm-3am) 1.37 (1.5)
Social/Recreation Social/Recreation Social/Recreation Social/Recreation
Variables Estimates | Variables Estimates | Variables Estimates | Variables Estimates
Constant 1.22 (4.9) Constant -0.19(-0.7) | Constant -3.08 (-14.5) | Constants 0.75(2.4)
D(3-6:30am) -3.53(-13.0) | D(3-6:30am) 1.46 (3.3) | D(7:30-8:30am) -0.37 (-1.3) | D(3:00-8:30am) -0.69 (-1.6)
D(6:30-7:30am) -4.42 (-16.1) | D(6:30-8:30am) 0.92 (3.0) D(8:30-9:30am) 0.85(3.4) D(8:30-10:30am) -1.55 (-4.6)
D(7:30-8:30am) -4.70 (-16.9) | D(8:30-10:30am) 0.03 (0.1) D(9:30-10:30am) 1.87 (7.5) D(10:30-12:30am) -2.03 (-6.2)
D(8:30-9:30am) -3.55(-13.1) | D(10:30am-2:30pm) -0.36(-1.3) | D(10:30am-12:30pm) 2.81(12.2) | D(12:30-2:30pm) -1.70 (-5.2)
D(9:30-11:30am) -2.30(-8.8) | D(2:30-6:30pm) -0.07(-0.2) | D(12:30-2:30pm) 3.03(13.1) | D(2:30-4:30pm) -1.78 (-5.4)
D(11:30am-1:30pm)  -1.46 (-5.5) | D(6:30-7:30pm) 0.88(29) | D(2:30-4:30pm) 4.30(18.5) | D(4:30-6:30pm) -1.30(-3.8)
D(1:30-3:30pm) -0.99 (-3.7) | D(7:30-8:30pm) 0.86(2.7) D(4:30-6:30pm) 4.19(16.9) | D(6:30-8:30pm) -0.55 (-1.6)
D(3:30-5:30pm) 0.20 (0.8) | D(mid to old couples) 0.39(5.0) | D(6:30-8:30pm) 5.50(16.6)
D(5:30-7:30pm) 0.07 (0.3) D(8:30-10:30pm) 6.33(10.2)
D(7:30-9:30pm) 1.29(5.7) D(10:30pm-3am) 4.70 (3.4)
Dyhistory) -0.80 (-10.2) history) -0.11 (-2.8)
Summary Statistics N=20,928 | Summary Statistics N=6,108 | Summary Statistics N=52,478 | Summary Statistics N=11,929
Final Likelihood -28232.33 | Final Likelihood -8507.53 | Final Likelihood -90093.69 | Final Likelihood -19052.58
Initial Likelihood -43518.55 Initial Likelihood -9830.45 Initial Likelihood -124685.22 | Initial Likelihood -23212.76
Likelihood w. Const -38135.64 | Likelihood w. Const -9302.57 Likelihood w. Const -102731.17 | Likelihood w. Const -20806.40
1-L(F)/L(0) 0.35 1-L(F)/L(0) 0.13 1-L(F)/L(0) 0.28 1-L(F)/L(0) 0.18
1-L(FYL(C) 0.26 1-L(FYL(C) 0.09 1-L(FYL(C) 0.12 1-L(F)/L(C) 0.08

Note: Values in the parentheses are t-ratios. D refers to dummy variable, coded as 1 or 0; brief descriptions in the parentheses identify the condition(s) for which
the dummy variable is equal to 1.

as the product of mean probability and total frequency) are provided. activity that contributes most to differences between the predicted
¥? statistic are then calculated for each cell. In Table 2, if the 3’ sta- and observed distributions.

tistic is less than the critical value at n—1 degrees of freedom (where Table 2 indicates that when the model is applied to the validation
n is the number of time periods), the predicted frequency distribu- set, the overall activity pattemn by time of day is captured successfully.
tion is not significantly different from the actual frequency distrib- An examination of the y? statistics indicates that, without exception,
ution. The y? statistic associated with each cell also indicates the the actual and the expected frequency distributions are not signifi-

TABLE 2 Validation Results for Home-Based Activity Type for Workers and Students

Workers: HB Return to Work Workers: NHB Return to Work Workers: HB Social Recn Workers: NHB Social Recn
Time Period Actual __ Expected L Actual _ Expected £ Actusl _ Expected y? Actual _Expected ¥
3:00 am - 5:59 am 0 0 0.00 0 0 0.38 24 31 1.56 0 1 0.81
6:00 am - 7:59 am 1 1 0.00 1 1 0.03 95 101 0.31 3 6 1.76
8:00 am - 9:59 am 7 6 0.26 18 14 1.712 114 122 0.58 29 22 2.28
10:00 am - 11:59 am 14 21 213 58 57 0.02 100 100 0.00 42 48 0.63
12 noon - 1:59 pm 149 141 0.41 298 274 2.14 110 108 0.05 73 69 0.17
2:00 pm - 3:59 pm 68 68 0.00 120 109 1.23 163 179 1.39 118 124 0.33
4:00 pm - 5:59 pm 28 25 0.39 31 39 1.59 352 383 2.57 150 154 0.11
6:00 pm - 7:59 pm 18 36 891 6 12 319 531 555 1.01 149 126 4.10
8:00 pm - 9:59 pm 7 10 1.01 3 6 L.19 152 149 0.07 53 55 0.09
10:00 pm - 2:59 am 10 5 5.56 2 2 0.00 23 33 2.86 27 24 0.30

Non-Workers: HB Social Recn | Non-Workers: NHB Social Recn® Sample Sizes Used for

Time Period Actual _Expected  y* Actual _Expected _ y* Model Validation
3:00 am - 6:59 am 19 20 0.07 Model Type N
7:00 am - 8:59 am 72 72 0.00 14 16 0.21 HB for Workers 14,494
9:00 am - 10:59 am 101 105 0.13 51 45 0.89 HB for Non-Workers 2,384
11:00 am - 12:59 pm 65 67 0.06 52 58 0.58 NHB for Workers 11,120
1:00 pm - 2:59 pm 36 63 11.52 58 58 0.01 NHB for Non-Workers 4,608
3:00 pm - 4:59 pm 56 59 0.17 48 57 1.40
5:00 pm - 6:59 pm 7 59 224 41 36 0.76
7:00 pm - 2:59 am 73 66 0.68 29 40 2.79

* The first time period for this model is 3:00 am to 8:59 am.
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TABLE 3 Sample Estimation Results for Activity Duration Models (Weibull Distribution)

Full- or Part-time Workers Full- or Part-time Workers Non-Workers/Non-Students

Return to work Social Recreation Social Recreation
Variables Estimates Variables Estimates Variables Estimates
Constant 1.29 (44.32) Constant 0.890(20.71) | Constant 0.804 (37.48)
D(Male) 0.027 (1.58) D(Male) 0.076 (3.14) D(Male) 0.131 (4.38)
D(Full-time Employ) 0.117(5.07) D(Full-time Employ) 0.048 (1.75) History School -0.0091 (-1.61)
History Work -0.017(-3.55) | Age -0.0036 (-3.88) | History Social/Recn -0.022 (-2.15)
History Return Work -0.138(-12.8) | History Work -0.017 (-4.69) | D(7:00-9:00 am) 0.281 (5.42)
D(7:00-9:00am) 0.382 (5.16) History Social/Recn 0.0065 (0.59) | D(9pm-12Midnight) 0.099 (1.08)
D(1:00-4:00pm) -0.057 (-3.22) | D(Family;Child 5-15 yr) -0.108 (-3.11)
D(7:00-9:00pm) 0.248 (3.67) D(Couple; Wife <35 yr) -0.166 (-3.26)

D(5:00-7:00am) -0.271 (-3.89)

D(7:00-9:00am) -0.091 (-1.51)

D(7:00-9:00pm) 0.029 (0.956)

D(%pm- | 2midnight) 0.106 (2.03)
Y 1.84 (79.37) Y 1.15(97.99) Y 1.11(84.47)
Summary Statistics N=4,070 Summary Statistics N=5369 Summary Statistics N=4,171
Final Likelihood -4295,327 Final Likelihood -8997.566 Final Likelihood -7172.690
Initial Likelihood -6748.779 Initial Likelihood -9330.422 Initial Likelihood -7288.913

Note: 1. Values in the parentheses are t-ratios. D refers to dummy variable, coded as 1 or 0; brief descriptions in the parentheses
identify the condition(s) for which the dummy variable is equal ro 1.
2. History variables refer to the cumulative past time spent on a certain activity from the beginning of the day to the current

activity.

cantly different for all of the six models presented. It is noteworthy
that similar results were also obtained for other activity types (tables
not shown).

Activity Duration Models

Table 3 presents estimation results for a few activity duration mod-
els. These models are estimated assuming that the duration of an
activity episode is described by the Weibull distribution.

The Weibull distribution is often used to model the failure time
distribution of manufactured components. Analogously, it may be
used to model the distribution of the length (duration) of activity
episodes. The Weibull density function is convenient in that it
provides a wide variety of density curves to model real-life failure
time distributions. In addition, unlike the gamma distribution,
the Weibull distribution has a closed-form expression for its
cumulative distribution function.

In all of the three models presented in Table 3, the model coeffi-
cients have the expected sign. History dependence is a significant
factor influencing the length of an activity episode. For example, as
the cumulative past time spent at work increases, the length of a
“return-to-work” activity episode decreases. Similarly, as time spent
at work or school increases, the duration of social-recreation activity
episodes decreases,

Time-of-day is also found to be a significant factor explaining
activity duration. Social-recreation activities are shorter in the momn-
ing and longer in the evening for workers. The reverse is true for non-
workers, who may often pursue social-recreation opportunities in the
morming. Return-to-work activity durations are longest in the morn-
ing and late evening but are shorter during midafternoon. Finally,
socioeconomic variables such as gender, employment status, age,
and household structure are found to influence activity durations.

Validation of the activity duration model (results not presented in
the interest of brevity) may be done in a manner similar to that for
activity type choice models. The observed and predicted frequency
distributions of activity durations by activity type may be compared

by using % test statistics to determine whether the activity duration
models are statistically replicating observed activity sojourn patterns.

CONCLUSION

An analytical framework for the development of a procedure for the
generation of synthetic activity-travel patterns has been proposed in
this paper. As more refined travel demand forecasting and policy
analysis are demanded in the current transportation planning
contexts, it is becoming inevitable that a new generation of travel
demand models will be adopted to satisfy planning needs. Micro-
simulation of travel behavior is emerging as a promising approach,
Many issues, including the generation of synthetic activity-travel
patterns, need to be resolved before its practical adaptation, yet only
limited knowledge has been accumulated on these issues. In this
study attempts have been made to include a broad range of analyti-
cal issues and develop a rationale for the proposed approach. It is
hoped that the paper has aided in paving the way for the develop-
ment of a synthetic activity-travel pattern generator and toward the
formulation of the next generation of travel demand models.

ACKNOWLEDGMENTS

The authors thank two anonymous referees for their helpful sug-
gestions. This study was partially supported by a National Science
Foundation project to the National Institute of Statistical Sciences.

REFERENCES

1. Miller, E. Applications of Microsimulation to Activity Based Forecasting.
Presented at TMIP Conference on Activity Based Travel Forecasting,
New Orleans, La., June 1996,

2. Pas, E. L Is Travel Demand Analysis and Modeling in the Doldrums? In
New Developments in Dynamic and Activity-Based Approaches to



162

Travel Analysis (P.M. Jones, ed.), Avebury, Aldershot, United Kingdom,
1990, pp. 3-27.

. Beckman, R.J.,, K. A. Baggerly, and M. D. McKay. Generating Syn-

thetic Baseline Populations. Report LA-UR 95-1985. Los Alamos
National Laboratory, Los Alamos, N. M., 1995.

. Bhat, C., and F. S. Koppelman. A Structural and Empirical Model of

Subsistence Activity Behavior and Income. Transportation, Vol. 21,
1994, pp. 71-89.

. Kitamura, R. A Sequential, History Dependent Approach to Trip-

Chaining Behavior. In Transportation Research Record 944, TRB,
National Research Council, Washington, D.C., 1983, pp. 13-22.

. Kitamura, R., and M. Kermanshah. Identifying Time and History Depen-

dencies of Activity Choice. In Transportation Research Record 944,
TRB, National Research Council, Washington, D.C., 1983, pp. 22-30.

. Kitamura, R., and M. Kermanshah. A Sequential Model of Interdepen-

dent Activity and Destination Choices. In Transportation Research
Record 987, TRB, National Research Council, Washington, D.C., 1984,
pp. 81-89.

. Lerman, S. R. The Use of Disaggregate Choice Models in Semi-Markov

Process Models of Trip Chaining Behavior. Transportation Science,
Vol. 13, No. 4, 1979, pp. 273-291.

. Mannering, F., E. Murakami, and S. G. Kim. Temporal Stability of

Travelers’ Activity Choice and Home-Stay Duration: Some Empirical
Evidence. Transportation, Vol. 21, 1994, pp. 371-392.

. Niemeier, D. A., and J. G. Morita. Duration of Trip-Making Activities

by Men and Women: A Survival Analysis. Transportation, in press.

. Bhat, C. A Hazard-Based Duration Model of Shopping Activity with

Nonparametric Baseline Specification and Nonparametric Control for
Unobserved Heterogeneity. Transportation Research, in press.

. Kitamura, R., T. van der Hoorn, and F. van Wijk. A Comparative Analy-

sis of Daily Time Use and the Development of an Activity-Based Trav-
eler Benefit Measure. Presented at the EIRASS Conference on Activity
Based Approaches, Eindhoven, The Netherlands, May 1995.

. Golob, T. F., and M. G. McNally. A Model of Household Interactions

in Activity Participation and the Derived Demand for Travel. Presented
at the EIRASS Conference on Activity Based Approaches, Eindhoven,
The Netherlands, May 1995.

. Pas, E. . A Flexible and Integrated Methodology for Analytical Classi-

fication of Daily Travel-Activity Behavior. Transportation Science,
Vol. 17, No. 4, 1983, pp. 405-429.

. Adler, T., and M. Ben-Akiva. A Theoretical and Empirical Model

of Trip Chaining Behavior. Transportation Research, Vol. 13B, 1979,
pp- 243-257.

. Recker, W. W., M. G. McNally, and G. S. Root. A Model of Complex

Travel Behavior: Part [—Theoretical Development, Part II—An Oper-

17.

18.

19.

20.

21.

22.

23,

24.

25.

26.

27.

28.

29.

TRANSPORTATION RESEARCH RECORD 1607

ational Model. Transportation Research, Vol. 20A, No. 4, 1986,
pp. 307-318 and 319-330.

Recker, W. W. The Household Activity Pattern Problem: General For-
mulation and Solution. Transportation Research, Vol. 29B, No. 1, 1995,
pp. 61-77.

Simon, H. A Behavioral Model of Rational Choice. In Models of Man,
(H. Simon, ed.) John Wiley & Sons, Inc., New York, 1957.

Kitamura, R. Time-of-Day Characteristics of Travel: An Analysis of
1990 NPTS Data. In Special Reports on Trip and Vehicle Attributes,
1990 NPTS Report Series. Publication FHWA-PL-95-033. FHWA,
U.S. Department of Transportation, Feb. 1995, pp. 4-1-4-56.

Horton, F. E., and P. W. Shuldiner. The Analysis of Land Use Linkages.
In Highway Research Record 165, HRB, National Research Council,
Washington, D.C., 1967, pp. 96-107.

Nystuen, J. D. A Theory and Simulation of Intra-Urban Travel. In
Quantitative Geography—~Part I: Economic and Cultural Topics
(W. L. Garrison and D.F. Marble, eds.), Studies in Geography,
Vol. 13., Northwestern University, Evanston, Ill., 1967, pp. 54-83.
Sasaki, T. Estimation of Person Trip Patterns Through Markov Chains.
In Traffic Flow and Transportation (G. F. Newell, ed.), Elsevier Science
Publishers, New York, 1972, pp. 119-130.

Kondo, K. Estimation of Person Trip Patterns and Modal Split. In Trans-
portation and Traffic Theory (D. J. Buckley, ed.), Elsevier Science
Publishers, New York, 1974, pp. 715-742.

Hanson, S., and D. F. Marble. A Preliminary Typology of Urban Trip
Linkages. The East Lakes Geographer, Vol. 7, 1971, pp. 49-59.
Robinson, J. P., R. Kitamura, and T. F. Golob. Daily Travel in The
Netherlands and California: A Time-Diary Perspective, Rijkswaterstaat,
Dutch Ministry of Transport, The Hague, The Netherlands, 1992.
Beckmann, M. J., T. F. Golob, and Y. Zahavi. Travel Probability Fields
and Urban Spatial Structure: 1. Theory. Environment and Planning A,
Vol. 15, 1983, pp. 593-606.

RDC, Inc. Further Comparative Analysis of Daily Activity and Travel
Patterns and Development of a Time-Activity-Based Traveler Benefit
Measure. Rijkswaterstaat, Dutch Ministry of Transport, The Hague, The
Netherlands, 1993.

Hagerstrand, T. What About People in Regional Science? Ninth Euro-
pean Congress of the Regional Science Association Papers, Vol. 24,
1970, pp. 7-21.

Kondo, K., and R. Kitamura. Time-Space Constraints and the Forma-
tion of Trip Chains. Regional Science and Urban Economics, Vol. 17,
1987, pp. 49-65.

Publication of this paper sponsored by Committee on Traveler Behavior
and Values.



