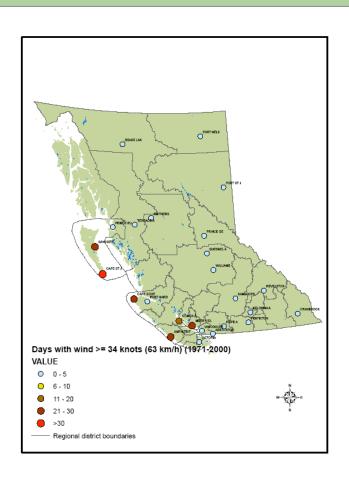
Preliminary Wind Thresholds for Power Outages on Vancouver Isl.

Bill Taylor, Tina Neale Environment Canada

Coastal winter wind storms are associated with major outages

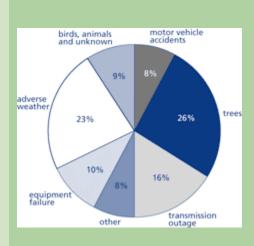
B.C.'s Stanley Park loses 1,000 trees after storm


Source: CTV.ca News Staff

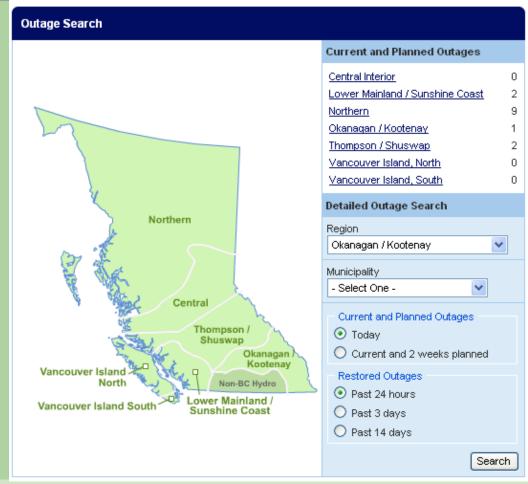
Tens of thousands still in dark after massive B.C. storm

Source: CBC.ca News

Environment Canada's Wind Warnings


South Vancouver Island 65 km/hr (gust 90 km/hr)

North Vancouver Island if E - SE 85 km/hr (gust 110 km/hr)



Environment Canada - Forecast Regions

BC Hydro Outages

Almost half of all power outages are caused by adverse weather and trees

http://www.bchydro.com/outages/

BC Hydro Outage Data

- Date of outage
- Region affected
- Cause of outage
- Wind speed
- Number of customers affected
- Hours of power interruption
- Cost of service recovery

BC Hydro defines events as "major" based on the severity of service interruption and the cost to restore power, i.e. a threshold is already implicit in the data.

Data issues

- Spatial: site of wind observation is usually different than location of outage
 - Find a representative station, i.e. site location & exposure, wind regime – e.g. Victoria Intl Airport
 - Point (wind) vs. area (outage) data
- Temporal: timing of outage not concurrent with daily peak wind or maximum gust
 - Time of onset of power outage not included in BC Hydro data
 - Limitations of daily wind data

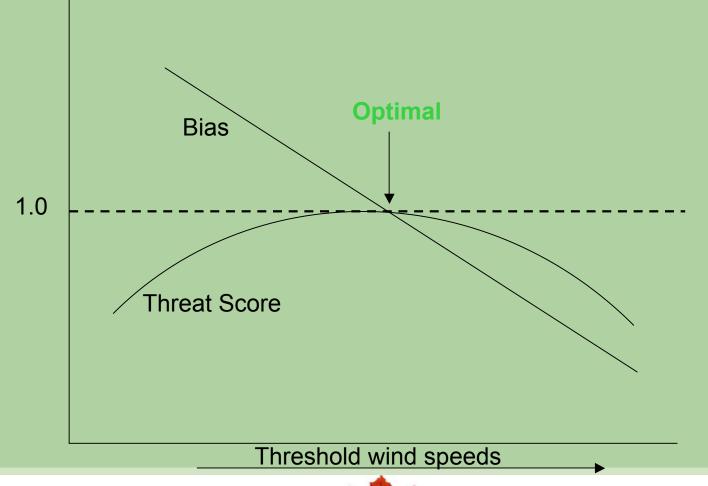
Goal: Detect threshold for wind and antecedent rainfall

- Predictand: Power Outage
- Predictors:
 - Wind
 - daily peak wind
 - peak gust
 - Antecedent rainfall
 - percent above normal
 - n-day accumulations prior to outage

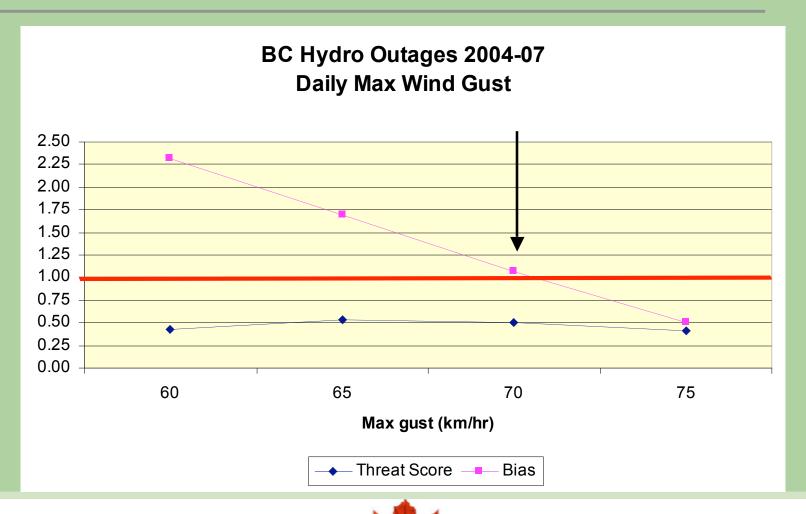
Forecast Skill Scores (contingency table)

	Above Wind Threshold	Below Wind Threshold
Outage	Hit (a)	Miss (b)
No Outage	False Positive	(d)

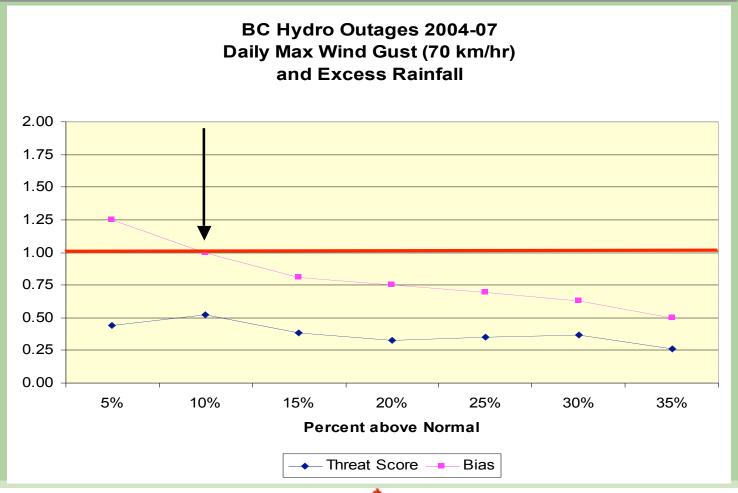
Date	MaxGust	BC Hydro Event	
13-Dec	98	Υ	
31-Jan	96	Υ	
3-Nov	85	Υ	Estimating thresholds –
17-Jan	85		•
1-Jan	78	Y	a process of trade-offs
15-Dec	78	Υ	
28-Jan	76	Υ	
11-Dec	76	Υ	
09-Jan	74	Υ	
12-Mar	74		
29-Jan	72		
1-Feb	72	Υ	
16-Feb	72	Υ	Raising the threshold
10-Nov	72		 reduces false positives
05-Jan	72	Υ	reduces laise positives
26-Jan	70		 increases misses
12-Nov	70		
17-Feb	69		 Lowering the threshold
15-Nov	69	Υ	Lowering the threshold
12-Dec	69	Υ	 fewer misses – more outages
08-Dec	67		accurately forecasted
4-Feb	67	Υ	·
19-Nov	67		 increases false positives
20-Dec	67		


Forecast Accuracy Measures

- Threat Score a/(a + b + c)
 Proportion correct after removing non-events
 Used for low frequency events
 Threat Score from 0 (worst) to 1 (best)
- Bias (a + c)/(a + b)
 Ratio of average forecast to average observation
 Unbiased forecast, B = 1

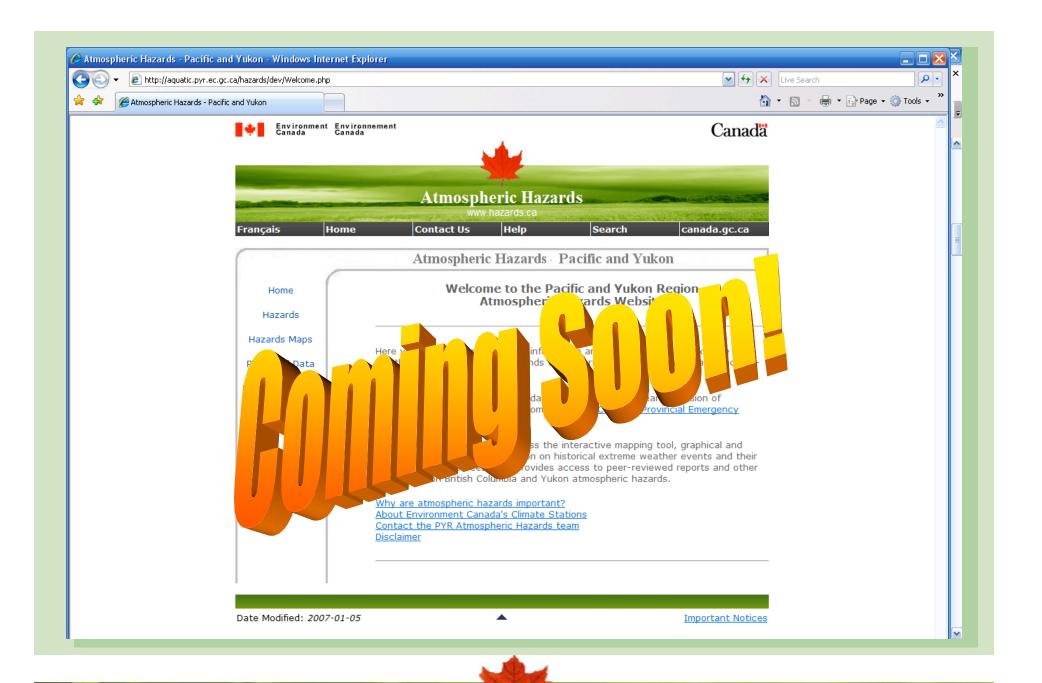

These scores can be used conjointly to find the optimal threshold.

(Wilkes, D. 1995: Statistical Methods in the Atmospheric Sciences, Academic Press, pp 238-248)


Threshold Detection

Wind Gust Threshold Estimate

Joint Occurrence of Max Gust and Antecedent Rainfall


Conclusion

- Found a good "rule of thumb" for wind thresholds and outages
 - Victoria Int'l A is a reasonable proxy for Vancouver Island winds
- Despite spatial and temporal uncertainties in the data, we found
 - The contingency table method is a practical means of exploring wind thresholds (bias and threat score)
 - Given a predetermined wind gust threshold, the method is only slightly sensitive to antecedent rainfall amounts
- Need to explore effect of improved spatial and temporal data (time and location), for both wind and outages
- Need to investigate other methods of threshold identification

Acknowledgements

We are grateful to the staff of the Field Operations Division of BC Hydro for providing outage data.

Reference: BC Hydro Winter Storm Report, October 2006 – January 2007.

