A R S B AIAT

v

v

f CHAPTER 1

d .
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® £ 1.1 Nature of subject

£ 4 It is rather difficult to define precisely what ‘queueing theory’
includes. The classic prototype problem is the following: customers

v % {for example, people) arrive at certain time instants at a service

1 7 point {at a bank counter, an air ticket counter, a highway inter-

2 section, ete.). The service facility requires a certain time to serve

f each customer but is capable of serving only finitely many customers

& at a time (for example, one). If customers arrive faster than the

3 facility can serve them, customers must wait in a queue. Typically,

both the customer arrivals and the service times are specified to

g have some given probability distributions. One wishes to relate the

delays in queue, queue lengths, ete., to the given properties of the

arrivals and service. In practical applications one frequently wishes

: further to compare the operation of several possible modes of

; operation with regard to its type of service, cost, ete. Perhaps a

% service facility performs more than one function, a bank clerk cashes

checks and also sells government bonds, an airline clerk sells tickets

and checks passengers, etc. Should one have separate facilities for

' sepatate functions? If one must have several servers, how many

: should there bel

Much of the terminology of queueing theory is motivated by the

type of applications described above but there are other possible

labels. In a production process, articles enter some shop to have a

bolt tightened, for example. Articles are stored until the facility is°
ready to perform its task, The mathematical problem is clearly the

same as above. The ‘customers’ are not people but objects and the
‘queue’ is a storage, In some cases, the term ‘service’ also seems
inappropriate. Cars queue to cross an intersection beeause the inter-
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APPLICATIONS OF QUEURING THEORY

section will pass cars only at a restricted rate. The intersection is
‘serving’ the cars. The same is true of the landing strip of an airport.
Sometimes the ‘queue’ has no obvious physical location. In telephone
service, customers wish to use one of only finitely many trunk lines.
Sometimes the system reaches capacity and calls are rejected.
Whether customers keep trying or go away, there is no obvious
physical quene anywhere, Riordan’s book is titled ‘Stochastic Service
Systems’ {he worked for the {elephone company) but this book g,s
covers essentially the same topies as do books on queueing theory. :

In ‘queueing theory,” it seems that the usual motive is to keep
queues short. The mathematical theory of queues, however, differs E
only slightly from the ‘theory of inventory’ and the ‘theory of dams.’
In inventory theory, there is a source of supply (which, however,
one can usually control) and there is an outflow. To add confusion,
a ‘customer’ in inventory theory is usually the consumer of the
inventory - the output. Regardless of what one calls these things,
however, one has a reservoir, a supply, a queue, an inventory or
whatever one wishes to call it. There is an input, and there is an
output, and there is a conservation principle — what goes in must
come out. In inventory theory the objective is usually to have a
non-zero supply (a non-zero queue). The theory of dams and the
theory of inventory differ only in that for the former one usually :
imagines that one can control the output but not the input whereas :
for the latter the reverse is true. Mathematically, however, there is
little distinction even between output and input. If one has a :
waiting room full of customers, one can think of a service as taking %
& customer out of the waiting room through the service, or one ean
imagine a ‘hole’ or ‘anti-customer’ as going through the service Z
backwards into the waiting room.

Much of the theory of queues deals with stochastic models but in ’
some of the simple approximations it is convenient to disregard the
discrete nature of customers {if they are in fact discrete) and treat
them as & continuous fluid. Perhaps the only thing that all the
above physical problems have in common is that we have a reservoir,
an input, and an output, and a conservation prineiple. Each physical
application, however, has its own peculiarities. It is not surprising
then that the literature on queues, dams, inventories, stc., runs
into the thousands of papers.




INTRODUCTION

1.2 Mathematical representation

We consider first the most typical class of queueing gituations. A
sustomer first arrives and joins & queue (if there is one); he later
Jeaves the queue and enters service and finally leaves the service.
Suppose we start our observation of this system at some time § = 0
chosen as some time when both the queue and the service are
empty. Let

O<ty<ty. ..

he the arrival times of customers to the system. Suppose also we
aumber the customers in order of their arrival

Whenever there is a queve of more than one customer, the order
ip which customers enter service need not be the same as the order
in which they arrive. Rules relating to order of service are called
‘queue disoiplines.” The diseipline by which customers are served in
order of their arrival is usually called ‘first in first out’ or ‘FIFQ
or ‘Arst come first served.’ This is the simplest mathematically
because a labeling of departure times from the queue in the order

O<t <ty< ...

is the same as defining ¢} as the departure time for the customer
numbered j as above. If the service is not FIFO then, depending
upon mathematical convenience, we may wish to identify the times
t; as departure times of the j# customer and thereby sacrifice the
property tj<tj,, or We may wish to Iabel the departure time in
increasing order with some subsidiary rule of identification which
gives the customer number of the customer that leaves at time ¢},
or its inverse, the departure number of the j** customer.
Some common types of discipline other than FIFQ are:
(a) First come last served (or is it last come firat served?) Suppose
a clerk brings letters one at a time and piles them on your desk.
The latest letter being placed on top. The letters are processed
by taking the one on top. The letters are the ‘customers,” the
pile is the ‘queue’ and the service is last come first served. The
letter on the bottom is not taken until everything on top is gone.
(b) Priority service. Each customer is assigned a priority elass when
he arrives. fmportant customers have high priority and are
served ahead of lower priority customers. There are a wide

3
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: variety of special versions of this depending on whether one

interrupts serviee or not,

(e Random order. Queues to board a frain are perhaps this way.
People do not line up as they arrive, If a quene forms when the
gate opens, the order in the queue has little relation to the time
people may have arrived originally.

Regardless of whether ¢} is the j** ordered departure ime or the
departure time of the j** ordered arrival,

TRy

because a fotal of j customers cannot have left the queue before J
Z% 5 : customers have arrived, nor can the j% customer itself depart from
§ i 3 the queue before it has arrived. It is also customary to assume that
e when the system is empty (both the service and the queue} {; = ¢t3;
g i.e,, customers enter service immediately if the serviee is idle,
‘B If the service handles only one customer at a time, then customers
must leave the service in the same order in which they enter. If
i g they enter at times 0<#{<t; ..., then the times of departure #
must be ordered so that

L
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7 O<t/ <t <ti<ty< ...;

_ > the j+ 1% customer cannot enter until the % customer has left, In
e e some practical situations one may wish to attach some special
1 significance to both the ] and the t; ,. In most mathematical
analyses of queues it is usually assumed, however, that t;and ¢y
are equivalent if by time ¢} the j+ 1% customer has arrived. One
could, for example, redefine the behavior of the service and imagine
that as soon as customer j leaves, customer i+l is immediately
considered to have entered some hypothetical service. Or one could
also redefine the completion times and arbitrarily say that customer
J has not really left until the service is ready to serve customer j+ L

If a gervice can handle more than one customer at a time, then it
is no longer true that the departure times ¢} are ordered in the same
way & the entrance times t}. A typical example of this is a check-
out counter al a grocery store with several cashiers. A customer
which arrives at one cashier may arrive before another customer at ;
ancther cashier, but if the former has a long service time he may :
leave the service later than the second customer. A serviee facilicy '

4
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INTRODUCTION

which can serve m customers simultaneously is called in the queue
lterature an ‘m-channel’ facility.

Another example of a multiple-channel server is a parking lot with
s stalls. The identification is less obvious here, perhaps, because
one dees not ordinarily ihink of & parking stall as performing a
‘service.” Customers (cars) arrive at the lot and perhaps wait for an
empty spot. Once they have entered the service (parked), they
remain there for some length of time which probably has little
connection with the properties of the lot. When they leave, the
channel is available for another customer. There is cleariy no reason
why customers should leave in the same order as they arrive.

A mathematical description of a queueing faeility consists of any
sot of rules wherehy the times ¢} and 7, and perhaps also the
customer identities, can be evaluated from given values of the &

=
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e

S
e
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These rules could conceivably be guite complicated and involve 2
complex interrelations between service times, arrival times, ete., *‘
restricted only by the universal principle that a customer cannot f
leave before he has arrived, which in turn guarantees that the
number of customers in queues or in serviee is non-negative. é
Most systems which are analysed in the queueing theory literature 2
have very simple rules for the evolution of the queue. The mathe- : _
matical complications are not directly associated with the queue -
mechanism, but with the stochastic analysis. Even though the ?;,
postulated relations between arrival times and departure times ,;
appear quite simple, they lead to fairly complex relations between Z T -
nrobability distributions for arrivals, departures, quene lengths, ; 7 5 g 253
waits, ete. > S 7
In a typical single channel queueing problem, one is given the ; - - 2 % s"*‘
arrival time of customers ¢; or their differences 2 =
b i ; e
5= bty (2.1 - - % .
the interarrival times {actually one is given the probability distri-
butions for the 7;5, and one i3 given the service times e
” : o ¢ i
= £t (2.2) o §
{or their probability distributions). One also specifies a gueue

[ ).
dizcipline and some times & {usually zero) between the completion
of the j* service £] and the time the service s ready to aeccept

3
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AFPPLICATIONS OF QUETUEING THEORY

customer j+1 (if he has arrived). If the j+ 1t customer has not
arrived by time 27+ 8y, he is assumed to enter service immediately
upon his arrival ab time ¢; . Thus
t;‘ﬂ = MAax {f;y, t;—-}-ﬁ;) = max (., t;“f'sf"i“sf)- {2.3)

Equations (2.1), (2.2), and (2.3), along with a specification of the
arrival time ¢, of the first customer and that the system was empty
then (f; = f,), represent a formal description of the system. From
(2.1 one can sequentially evaluate {5, ¢y, . . . from given values of
the 7; and #;. From (2.3), one can sequentially evaluate L1 M
from given values of the s;+8; and ¢, and the previously evaluated
t5. The t] can then be evaluated from the s; and ¢;.

One can also evaluate ¢; explicitly as

3
t; = i+ Z T
k=2

If it weren’t for the fact that a customer cannot be served until he
arrives, there would be no coupling between the arrivals and
departures, and one could also evaluate the ¢} in the zame way

G
t; = b+ Z (sr+8g), it tp .  <Fp+sp+8;.
k=1

So far, the coupling appears to be only a minor nuisance to the
computations, which involve only trivial additions and comparisons
anyway, We shall see later, however, that it is this coupling which
causes most of the mathematical problems in the stochastic analysis
of gqueues in which the +; and s; are treated as random variables.

1.3 Graphical representation

A graph of a function always seems to convey information more
rapidly than a formula, and graphical constructions of solutions to
mathematical problems, when they exist, frequently can replace
very complicated analytical procedures. This is certainly the case
in the analysis of queues. We shall see, though, that some things
which are analytically simple are not graphically simple, and vice
versa, The quickest way to find solutions to mathematical problems
is to exploit each technique in its proper place. There are several
methods of graphical representation of the evolution of a queneing
system, a few of which will be deseribed here.
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INTRODUCTION

The most obvious way of identifying graphically a set of arrival
times t; is to mark points on & straight line at distances {5 from
some origin. It turns out, however, that it is more convenient here
5o draw a graph of a function A(f) which, for each £, represents the
cumulative number of arrivals to time

A(t) = number of #; with iy <t 3.1)
This is a step function which increases by one at each time f7 as
shown in Figure 1.1.

One immediate advantage of this representation is that we will
also have oceasion to analyse inflow and outflow of guantities other
than numbers of customers, for example value of products, amounts
of work to be done, ete. If the quantity in question is something that
is conserved in the sense that what comes in must go out, then it is
useful to generalize (3.1) to
Aff) = cumulative quantity {or number) to arrive by time £. (3.1a)

This is also a monotone non-decreasing function of f, but s not
necessarily integer valued. It may or may not be a step funection
depending upon whether the arrivals are discrete or not,

On the same graph as A(f), one can draw another eurve for

D) = number of {; with ¢;<¢ (3.2)
or
D{t) = cumnlative quantity {or number) to enter {3.2a}
gervice by time f,
and
() = number of £ with £5<¢ (3.3)
or

D#ip) = cumulative quantity {or pumber) to have left

the service by time & {3.3a)

On this graph one can easily identify most of the quantities of
interest in queueing theory (particularly for the queue with first in
first out discipline and ome channel). At any time i, Ay—Dih
represents the number of customers (or guantity) which has arrived
cince time 0 but has not yet left the queue. Thus

guantity in queue or gueue length = Q(t) = A{)— (1) (3.4a}

™
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APPLICATIONS OF QUEUEING THEORY

is the vertical distance at time £ between the two curves. Similarly,

quantity or number of custorers in system
= @) = A{t)~ D) (3.4b)
is the vertical distance between A{f) and IF() at time ¢, and

quantity er number of customers in service
= Dt} — ¥, {3.4¢)

These three quantities are all required to be non-negative, thus

A(tyz D(t) = D*{t) for all 1.
10 — pelraoe
T gl s T
: B e
|
f 5 : % x { ﬂi?w ------
s ! H
. [l I _
< i g;’f 3 ; E :' 3
. st o |
. B A(t) § L Lo
z= 2 N
: 3 Q)1
5 A = pmbpd ]
o - oy | 0%
g - o
é S2 ]
, BN
7 O ;u iﬁ :
2 =t t Time ¢ ¥
3 Figure 1.1 3
s : In the case of FIFO discipline, the arrival fime of the J* customer

is the time when A(t) jumps from J=1to j and his departure time
from the quene is the time when Dty jumps from j—1 to . The
time spent in queue is the difference between these times and is
identified geometrically as the horizontal distance between 4 {£} and
Dt} at the height between j—-1 and J- This time in queue is also
the area of a horizontal strip between A%} and D(1) between heights
J—1andj.
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For a single channel server (or actually any server for which the
departures are in the same order as the entrances) the horizontal
distance between D{f) and D*(t) represents a serviee time and the
horizontal distance from At} to D*(t) is (for FIFO) the total time
in the system, the time in gqueue plus time in service.

If A{t) represents a non-integer quantity, but service is FIFO in
the sense that any indivisible units of that quantity leave in the
same order a3 they arrive, then times spent in the gueue andfor
gervice can still be identified geometrically as horizontal distanee,
in the same sense.

Geometrically, a horizontal distance is no more complicated to
visualize than a vertical distance, but in the customary mathematical
notation, the former is perhaps more awkward. If we had cheosen
to draw & graph of arrival times ». cumulative number instead of
the reverse, the horizontal axig would be the vertical axis and vice
versa; in fact, the new graph would be just a reflection of the old
graph across a 45° line through the origin. The customary notation
for this is that if « and ¢ represent the co-ordinates of the graph,
and we draw the graph z = A{#) as in Figure 1.1, the reflected
graph is the ‘inverse’, § = 4 ~1(x). Similarly for D{). The horizontal
distance between A() and D(f) at height z would be identified as
D Yz)— A -1=z). The herizontal distance associated with a customer
who arrives at time ¢ would be D% A(i}}~¢, a rather awkward
gymbol for something that is geometrically so simple.

Although Figure 1.1 furnishes a convenient graphical representa-
tion of the count or quantity of arrivals, departures, and queue
lengths (regardless of the queune discipline or multiplicity of servers),
it does not always furnish a convenient way of identifying queue
disciplines or delays if the order of service is not FIFO. If the
service is not FIFO, the delay to a customer who arrives at time ¢
is identified as a horizontal distance between time ¢ and some point
at which D{f) inereases, but it is no longer the length of a horizontal
ine between At} and D(t), To identify delays to individual
customers, one must saperimpose upon this graph some scheme of
identifying which departure is associated with which arrival, There
s no convenient way of doing this {except perhaps for a few other
special types of diseipline).

if the queue discipline is not FIFO and/or there is & multiple-
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APPREICATIONS OF QUEUEING THEORY

channel server, there is an alternative way of representing the
evolution of the system, We draw A{f) as before except that we
interpret it as a graph of the inverse, ie., for each cumulative
number of arrivals 2, 4 -1z} is the arrival time of the 2% arrival.
This x is considered as a continuous variable, any fractional part of
the customer being considered to arrive at the time of the whole.
For j—l<wz<j, A-Yz) is the arrival time of the j# customer,
identified in section 1.2 by ¢, i.e., the function 4 -1(j) is essentially
equivalent to the function #; of j.
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Figure 1.2

The funetion D-(r) represents the time of the w* cumulative
departure from the queue. lnstead of drawing the curve D ),
however, we now draw a curve for the time of departure from the
queue of the o cuuulative arrival, j.e., of the eustorer originally
labeled with z. For j—1 <z« j, this is the quantity t; of Bection 1.2
tndexed with the arcival numbers, This graph is labeled in Figure
1.2 a8 A and Is drawn with the ‘independent variable’ » along the
vertieal axis,
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INTRODUCTION

If service were FIFO, the curve A and D{t) would be the same.
Otherwise the eurve A represents a single-valued function of , bt
it is not monotone in z nor dees it have a unique inverse (it does
not define a single-valued funetion of #). Since t;=i;, the curve A
raust never lie to the left of A{f).

The advantage of this diagram as compared with Figure 1.1 is
that it contains all relevant information about the system including
the discipline (one can see from the diagram the order in which
arious customers entered service). Also, the delay in queue to any
jt customer is still the horizontal distance ¢}—t; between A{f) and
A ab height 7. The disadvantage of the figure is that the geometric
interpretation of quantity or number in the queue is less convenient.
Qince A and A(f) never cross, they will enclose an area in the x—t
plane, the locus of all horizontal lines from A(t) to A. If one draws
= vertical line at time ¢, it will slice this area in guch a way that any
vertical segment will be identified with a set of heights x for
customers who have arrived but have not left the queue. The total
length of all segments will be the quantity or number in queue. In
contrast with Figure 1.1, this is not generally just the length of a
single segment.

For a multiple-channel server, one can also draw a curve &F
which describes the times at which customers leave the service, in
the same way as A describes the times at which they leave the gueue.

1.4 Averages

The above representations of queues involve only elementary
smathematics, Tt is, in & sense, the approximate theory of queues
which is complicated. In analyzing the behavior of queues, one does
sot want to be forced to observe the arrival and service times of
every customer. This, on the one hand, involves too much data and
secondly it is not very interesting data because it is not the same
i two different experiments. One would prefer to specify only a few
characteristics, some average arrival rates, service rates, ote.
Furthermore, even if one conld describe in detail exacily how lazge
the gqueue would be at each instant of time, this is not what one
wishes to determine. One would prefer some more of less gualitative
some ‘figures of merit’ which rseasure the typical
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APPLICATIONS OF QUEUKING THEGRY

behavior. This is essentially the reason why one treats the queueing
phenomena as a stochastic precess. One only wishes to consider the
average hehavior of the svstem over a wide range of typical patterns.

Whether ozie treats the problem stochastically or deterministicaliy,
however, there are certain gross properties one may wish to caleulate;
for example, the average wait in queue for a collection of »n customers
or the time average gueue length over some period of time.

For FIFO queue discipline, the total queweing time to customers
j+1to j-+n inclusive is equal to the area of the region in Figure 1.1
bounded by A(t), D{t) and two horizontal lines at height j and j 4 n.
The average queueing time to these customers is

N Ligr | L
average queueing time = — Y (i —ty) 4.1
LF R

1 o
= —~ x total queueing time,
7

squivalently the average horizontal distance between At} and D
over the vertical range j to j+=n. Similar interpretations of the
total time in the system involve the areas betweon 4 and I,

The total queucing time spent by customers during a time interval
¢ to b+dt (during which G(f) 1s constant) is Q(t)dt, the number of
customers i quete during (¢, £+ dt) multiplied by the time df each
sustomer is delayed. The total queueing time during a time mterval

{, b} must be

& I3
[ Quiydt = Js rAd) — Dyt (4.2)

which Is alzo interpreted geometricaily ag an area, the aren bounded
by Aie) and Diy and two vertical lines at times ¢ and 5. The average
guedeing tme per unit time is the average queue length, the
average of the vertionl distance between () and D}

avernge queue length = (4.53)

1
e tostid riensny e,
ih— 431
I# i 610 and (437 the times 2 and & are chosen as sny thmes for
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which Qa) = Q(b) == 0, then the curves A(t) and D(t) themselves
enclose an area. I A{a) = j and A(®) = j+n. then the total queune-
ing time during the time (a, b) in (4.3) is the same as the total
queueing time to customers j+1 to j+n in (£1), Le, the areas in
question can be computed either by addition of horizontal strips or
integration of vertical strips. Also by definition of the averages as

above

S n::;
?‘;*‘f?” S
i

(time interval b-a) X average quenc length
= (number of customers #) (4.4)

o
DRI
e

S ““"52;5‘3 _—

% {average queue time per customer)
= total quoueing time. % Ll
e : -’):jw{;,,
If the queue behavior is such that the queue vanishes repeatedly, : o jﬁ%@i&%

! %
S
: 2

every day at midnight or at other perhaps irregular (maybe
stochastic) times with a finite spacing, the above relation holds for
any or all choices of times @ and b when the gueue vanishes (not
necessarily consecutive times}. If (b—a) is sufficiently large and the
queue vanishes many times between @ and b, more or less evenly
digtributed over (a, b), then it should not be important whether the
queue vanishes at @ and b or not. Any contribution to the total
delay coming from the end conditions, between  and b and neighbor-
ing times when the queue does vanish, will be relatively unimportant
anyway in computing averages.

Over a long time one might also expect that the number of
arrivals n during (a, b) divided by b—qa, the average quete time peF
customer, and the average gueue length would all have limiting
values (be essentially independent of b—a). If so, then these averages
must be related by

T

o

i,

average queue length == (average number of arrivals
per unit time} {4.5)
x {average queue time per customer).

h
s
%
¢
E

The ‘average number of arrivals per unit time’ is by definition the
long time average. If the guantities in (4.5} are meaningful, (4.5} is
true by virtue of the definition of the averages.

Much of the literature on gueueing theory deals with what is
known as ‘stationary arrivals’ and this relation (4.5} is one of the
basie equations, also one of the few relations that is valid for a

13
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wide class of stochastic systems. Theorems relating to {£.5) can be
guite involved, but the difficulties, in effect, center around the
verification of mathematical conditions under which these averages
are well-defined, conditions which would be more difficult 1o verify
experimentally than (4.5) itself, For proof of this, see J. D C.
Little, ‘A proof for the queueing formula L = AW, Operations
Research 9 (1961), 383-387, and W. 8. Jewell, ‘A simple proof of:
L = AW, Operations Research 15 (1967), 1109-11186.

There are also companion relations to (4.1) to (4.5} involving
arrivals and departures from the system (queue plus service). If o
and b are chosen at times when Q%() = 0, the system is empty,
then for a single server queue the counterpart of (4.4) is

{time interval b—a} % (average number in system)
= {mumber of customers n} (4.6)
% [average time in system por enstomer)
== total time in system,

or if long time averages are well-defined

average number in system = {arrivals per unit time)
x (average time in system {4.7)
per customer)

By the same type argument, one can obtain corresponding
relations for the serviece system alone. Although the curves Dit) and
D#i3) may be strongly dependent wpon each other, there is nothing
in the derivation of (4.4) or (4.6) that specifies how these curves
are obtained. Thus if averages are well-defined, it must also be
trae that
{nverage number in service) = (arrivals per unit time)

» (average time of a customer  {4.8)}
in service)
Note that if long time averages are well-defined, the arrivals per
unit time must bo cgual to the number entering servive per unid
time or the number leaving service per unit time.

Although the shove relations ($.4) to (4.8} were derived under the
assumyption that the quene diseipline was FIFO and the gueve was
a single channel server {(onstomers entered and left the service in
the same order in which they arsived), these relations are also true
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for any queue discipline or any number of channels {the ordering of

i

customers is irrelevant). Also generalizations of these equations can s
be obtained for any conserved quantity. i

R
SRR

In a figure similar to Figure 1.2, suppose times o and b are two
times when the queue vanishes. Consider the region K enclosed by
A{t) and A between the times a and b, or between heights A{z) and
A(B). The area of this region can be obtained by integration of
vertical slices through R of width dt or by integration (or summation)
of horizontal slices. If we now use Q{f) to denote the quantity in
quene at time f, the length of the intersection of a vertical line at ¢
with R, then
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[
area of B = j Q). (4.9)

Also if we had drawn the curves A(t) and D{t) for cumulative arrivals
and departures, this Q(f) would be A@)--D{t) as in (4.2). The

.

analogue of (4.3} is
b
1 f R
average quantity in quete =——1 Q(t)dt = e ol @1y
b—u b—a
a4
If A(t) is composed of steps of height ag, ie., the k# arrival

brings to the queue a quantity @z, and the heights A(a) to 4(b)
enclose customers j+1 o j+-n inclusive, then

jin
atea of B = Y ay{ij—1tg). (4,11} i
k=i+41
We can interpret this in {at least) two ways. If we define :
1 it» =
- Z ax(t; — ;) E2 average area per customer {£.12) >
gkl

then

area of & = nxaverage area per customer.

PR 2

This interpretation is of interest particularly if the gquantity in
question, the g for customer k, happens to be the cost per unit of
delay for customer & {the value of his time), or if ay is the value of
the k% arrival {objects in a production line, for example) times
the interest rate of money so that @z is the eost per unit time of
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APPLICATIONS OF QURBUERING THEORY

storage in the quene, The average area per customer is then inter-
preted as the average cost per custorner.

A second interpretation is to let

1 FEm , . . .
T Y ag{t{—tr) = average delay per unit (mantity, 413
-+ . . A &
= 1
Z‘ P kjr

30 that

area of B = [quantity to arrive during (¢, b))}
% [average delay per unit gquantityl.

If now, we equate the expressions for area of 7, we have

L mumber of arvivals in (¢, )
average quantity in quene = —— - - {£.14a)
(bt
# {nworage ared per eustomer)
Cuantify to arrive in (@, b)
= - (4. 14h)
(b—a)

% {average delay per quantity)

If these expressions have limits for farge (b—«), the quantities in
square brackets are interpreted as the long fime arrival rates of
cugtomers or quantity in {4 14a) and (4.14b) respectively.

In the special case in which the guantity i the nuraber of
customers, (4.14a) and {$.14b}, both reduce to (4.5} except that
here the gueue discipline was unspecified. Analogousty (4.7) and
(4.8} do not depend upon the queus digcipline or the number of
channels in the server.

One should not necessarily infer from the above argument, how-
eyer, that the average delay per customer for FIFO is the same as
for any other gueue discipline. We have only shown that (4.5) to
(4.8} are true for any queue dizcipline or equivalently that the
average delay per customer for any gueue discipline is the sume as
for a (perhaps hypothetical) system with FIFG queue discipline,
and the some departure curve (). 1t may be that this hypothetieal

16
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FIFO queue discipline cannot, in fact, be realized or if it could, it i - %%ﬁf S
; Ll

G

would yield a different departure curve than the given oune. There
are, of course, situations in which the departure times do not depend
upon the identity or order of the customers (all customers are
equivalent), in which case it is true that the average delay per
customer is independent of the queue discipline.

In this latter case, the advantage of FIFO over other types of
queue discipline is not related to the average delay but with the
variations in delay about the average. Obviously last come first
served discipline gives a high proportion of very short delays, also
some very long ones, but the same average as FIFO.

I

.:rg»..'»;,‘ 0

Ll

g

1.5 Applications of elementary relationships
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In most typical queusing problems, one specifies the arrival rate of :
: customers and the service times and one wishes to determine (among = : §5;"§f o ;;‘ jsg,;::,:f
other things) the average queue length and/or the average delay per : B S {f%g ’AW

0

customer., Equation (4.5) relates these two unknowns in a simple e e : e },ﬁ;g{ SeoRiaas

way, 30 it suffices to evaluate either one or the other, : ( e S
Equation (4.8), however, has some more direct applications. : ; :

Suppose one has a service facility of so many channels that a queue s o T G e

never forms, each customer enters service immediately. The arrival e : : :ff; ‘:i}’:';% ,:ﬂ;

rate of customers is specified (this is the long time average arrival s

3
S
s
o = i,
S
o 2

i 3
e A

e
;%ff

£
>
=

. : rate Tt x number of arrivals during time T, for large T') and so : 2 é;;gf’?a ;%?%%%%ﬂ

T is the average service time per customer (the usual arithmetic : i éﬁ”ﬁfﬁ?jﬁ?
average over many customers each with equal weight}. The question

¢ % is; what is the time average of the number of servers that are busy?

This would give at leagt o preliminary (low) estimate of how many
servers one needs, Equation (4.8) gives this directly because the
average time of a customer in service is the average service time
and the number of busy servers is equal to the number of customers
in service. :

This is a pather special but important type of ‘gueueing’ situation.
A telephone company, for example, knows the frequency of calls
{arrival rate} between two cities and the average duration of a call
(service time) and wishes to know how many telephone lines it
should provide, or at least how many would be used on the average
(number in service), An airport manager knows how many aireraft

17
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APPLICATIONS OF QUEUERING THEORY

movements there will be each day, or each week (arrival rate) and
the average ‘turn-around time,’ or the average time spent at a gate
(service time). He wishes to know how many gates will be occupied,
on the average (average number in service). In both cases, one
would actually like to know also something about the peaks in
demand, but these simple formulas at least give some useful infor-
mation with a minimum of effort.

For most multiple-channel queueing systems in which each
channel serves just one customer at a time and all channels are
similar, the service time of a customer does not depend upon the
number of channels. For example, for the telephone trunk line, the
length of a call does not depend upon the number of trunk lines, and
for the airport, the turn-around time does not depend upon the
number of gates. In this case, the right hand side of (4.8) does not
depend upon the number of servers, provided it is sufficient to
guarantee that queues do not grow indefinitely, Le., the long time
average arrivals per unit time into the service is the same as the
arrivals to the system. Thus the average number of busy servers is
independent of the number of channels.

The difference between a service with many channels and one
with only a few channels is that the former can serve customers with
tess delay in queue. During temporary surges in the arrivals, many
chapnels are in use; but daring lulls, very few are in use. In the
latter case, a queue forms during the surges and it is served during
the Iull; the servers are kept busy most of the time. The time
average number of busy servers is the same in both cases, but the
former has larger fluctuations,

Equation (4.8) also gives some interesting information for a single
channel server. Again one typically knows the arrival rate and
average service time, Equation {4.8) determines the time average of
customers in service. In the case of a single chaunel server, the
namber in service at any time is either O or I, and the average
number in service is the same as the fraction of time one server is
busy. The left hand side of (4.8} 13, in this ease, called the ‘traffic
intensity’ denoted usually by ¢. The quantity ! —g is therefore the
fraction of time the server iz idle, It is also interpreted as the
probability that a customer agriving ‘at a random time’ will enter
service withous delay,

18
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INTRODUCTION
PROBLEMS

1.1 From a table of random numbers, choose a set of 50 consecutive
digits (random numbers from 0, L, ..., 9), and designate these as
times 75, j = 2, ..., 51, From a different set of numbers, choose
the first 50 digits other than 9’s (random numbers frem 0,1, ..., 8)
and designate these ag times 3, § = 1, ..., B0, Suppose these are
the interarrival times and service times, respectively, of a single.
channel service with the first arrival at time 0. Draw a graph of
Aty and D(f) (scaled so as to fif on a gtandard size sheet of graph
paper). Also draw a graph of Q(t).

1.2. Show how on a curve of A{t) and D(f) one would identify the
delay to customer j if the queue discipline were last come first served.

1.3. (a) Let O = ¢, <f, . . . £, be ordered arrival times and 0<t <ty
... <t =ty ordered departures from & queue which
vanishes at time 0 and t,. If t,, is the departure time of
customer j, show that the sum of the squares of the delays

7

Z (t*;f“ti)g

j=i
is least if ns = j, i.e., for FIFO service. (The ¢; are assumed
0 be independent of the order of service).

(b} As a generalization of (s}, suppose the cost of delay to the
jth customer is a function C(w;) of the delay w; = tnj -t
with the function C(x) the same for all customers. The
total cost of delay to all customers is

Y, Clws).
=1

If the marginal cost per unit delay efz),

elx) = dO(z)dx, Clz) = | clx)da’,

DS m—

is & monotone increasing function of z, show that the total
cost of delay is least for FIFO.
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