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5.1 INTRODUCTION

It is important to realize that the primary function of a highway is to provide mobility.
This mobility must be provided with safety in mind while achieving an acceptable
level of performance (such as acceptable vehicle speeds). Many of the safety-related
aspects of highway design were discussed in Chapter 3, and focus is now shifted to
measures of performance.

The analysis of vehicle traffic provides the basis for measuring the operating per-
formance of highways. In undertaking such an analysis, the various dimensions of
traffic, such as number of vehicles per unit time (flow), vehicle types, vehicle speeds,
and the variation in traffic flow over time, must be addressed because they all influ-
ence highway design (the selection of the number of lanes, pavement types, and geo-
metric design) and highway operations (selection of traffic control devices, including
signs, markings, and traffic signals), both of which impact the performance of the
highway. In light of this, it is important for the analysis of traffic to begin with theoret-
ically consistent quantitative techniques that can be used to model traffic flow, speed,
and temporal fluctuations. The intent of this chapter is to focus on models of traffic
flow and queuing, thus providing the groundwork for quantifying measures of perfor-
mance (and levels of service, which will be discussed in Chapters 6 and 7).

5.2 TRAFFIC STREAM PARAMETERS

Traffic streams can be characterized by a number of different operational performance
measures. Before commencing with a discussion of the specific measures, it is impor-
tant to provide definitions for the contexts in which these measures apply. A traffic
stream that operates free from the influence of such traffic control devices as signals
and stop signs is classified as uninterrupted flow. This type of traffic flow is influ-
enced primarily by roadway characteristics and the interactions of the vehicles in the
iraffic stream. Freeways, multilane highways, and two-lane highways often operate
under uninterrupted flow conditions. Traffic streams that operate under the influence
of signals and stop signs are classified as interrupted flow. Although all the concepts
in this chapter are generally applicable to both types of flow, there are some additional
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136 Chapter 5 Fundamentals of Traffic Flow and Queuing Theory

complexities involved with the analysis of traffic flow at signalized and unsignalized
intersections, Chapter 7 will address the additional complexities relating to the analy-
sis of traffic flow at signalized intersections. For details on the analysis of traffic flow
at unsignalized intersections, refer to other sources [Transportation Research Board
1975, 2000]. 1t should be noted that environmental conditions (day vs. night, sunny
vs. rainy, etc.) can also affect the flow of traffic, but this issue is beyond the scope of

this book.

5.2.1 Traffic Flow, Speed, and Density
Traffic flow, speed, and density are variables that form the underpinnings of traffic
analysis. To begin the study of these variables, the basic definitions of traffic flow,
speed, and density must be presented. Traffic flow is defined as

q = (5.1)

L ]

where

g = traffic flow in vehicles per unit time,
n = number of vehicles passing some designated roadway point during time 7, and
t = duration of time interval.

Flow is often measured over the course of an hour, in which case the resulting value is
typically referred to as volume. Thus, when the term “volume” is used, it is generally
understood that the corresponding value is in units of vehicles per hour (veh/h). The
definition of flow is more generalized to account for the measurement of vehicles over
any period of time. In practice, the analysis flow rate is usually based on the peak
15-minute flow within the hour of interest. This aspect will be described in more
detail in Chapter 6.

Aside from knowing the total number of vehicles passing a point in some time
interval, the amount of time between the passing of successive vehicles {or time
between the arrival of successive vehicles) is also of interest. The time between the

s

passage of the front bumpers of successive vehicles, at some designated highway jﬂ’
point, 1s known as the time headway. The time headway is related to ¢, as defined in "

i=l A
where

t = duration of time interval,
h; = timne headway of the ith vehicle (the elapsed time between the arrivals of
vehicles fand i — 1), and
# = number of measured vehicle time headways at some designated roadway point.
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5.2 Traffic Stream Parameters 137
Substituting Eq. 5.2 into Eq. 5.1 gives

(5.3

or

1
= A 5.4
1= = )

where 1 = average time headway (X h,/n) in unit time per vehicle. The importance
of time headways in traffic analysis will be given additional attention in forthcoming
sections of this chapter.

The average traffic speed is defined in two ways. The first is the arithmetic mean
of the vehicle speeds observed at some designated point along the roadway. This is
referred to as the time-mean speed and is expressed as

B = — (5.5)

where

I, = time-mean speed in unit distance per unit time,

u#; = spot speed (the speed of the vehicle at the designated point on the highway, as
might be obtained using a radar gun) of the ith vehicle, and

n = number of measured vehicle Spot speeds.

The second definition of speed is more useful in the context of traffic analysis and
is determined on the basis of the time necessary for a vehicle to travel some known
length of roadway. This measure of average traffic speed is referred to as the space-

mean speed and is expressed as (assuming that the travel time for all vehicles is mea-
sured over the same length of roadway)

MS:

(5.6)

s L

where

i, = space~-mean speed in unit distance per unit time,
[ =length of roadway used for travel time measurement of vehicles, and
1 = average vehicle ravel time, defined as

7
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138 Chapter 5 Fundamentals of Traffic Flow and Queuing Theory

where
1, = time necessary for vehicle i to travel a roadway section of length [, and
n = number of measured vehicle travel times.

Substituting Eq. 5.7 into Eq. 5.6 yields

i ! (5.8)

s T T
5

=l
Or

PR S (5.9)

=
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which is the harmonic mean of speed (space-mean speed). Space-mean speed is the
speed variable used in traffic models.

EXAMPLE 5.1

SOLUTION

The speeds of five vehicles were measured (with radar) at the midpoint of a 0.5-mile
(0.8-km) section of roadway. The speeds for vehicles 1, 2, 3, 4, and 3 were 44, 42, 51,
49, and 46 mi/h (70.8, 67.6, 82.1, 78.8, and 74 km/h), respectively. Assuming ail vehi-
cles were traveling at constant speed over this roadway section, calenlate the time-
mean and space-mean speeds.

For the time-mean speed, Eq. 5.5 is applied, giving

#

_ 44+ 42 + 51+ 49 + 46
5

= 46.4 mi/h

For the space-mean speed, Eq. 5.9 will be applied. This equation is based on travel
time: however, because it is known that the vehicles were traveling at constant speed,
we can rearrange this equation to utilize the measured speed, knowing that distance, /,
divided by trave! time, 7, is equal to speed {I/1; = ).

i = s LIRS, )




i 1 _ 1
i 1] 1]
né [(f/zj)j né| ;)

_ i
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= 46.17 mi/h

ote that the space-mean speed will always be lower than the time-mean speed, unless

all vehicles are traveling at the exact same speed, in which case the two measures wil]
be equal.
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Finally, traffic density is defined as

k= (5.10)

e~ fX

where

k = traffic density in vehicles per unit distance,

n = number of vehicles occupying some length of roadway at some specified time, and
I = length of roadway,

The density can also be related to the individual spacing between successive vehicles
(measured from front bumper to front bumper). The roadway length, /, in Eq. 5.10 can
be defined as

ft

f — Zsi (5.11)

i=1
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; = spacing of the ith vehicle (the distance between vehicles { and i — 1, measured
from front bumper to front bumper), and

7 = number of measured vehicle spacings.

Substituting Eq. 5.11 into Eqg. 5.10 gives

k=i (5.12)
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140 Chapter 5 Fundamentals of Traffic Flow and Queuing Theory

OF

k=

(5.13)

where § = average spacing (2.5;/n) in unit distance per vehicle.

Time headway and spacing are referred (0 as microscopic measures because they
describe characteristics specific to individual pairs of vehicles within the traffic
strearn. Measures that describe the traffic stream as a whole, such as flow, average
speed, and density, are referred to as macroscopic measures. As indicated by the pre-
ceding equations, the miCroscoOPIC measures can be aggregated and related to the mac-
FOSCOPIC Measures.

Based on the definitions presented, a simple identity provides the basic relaton-
ship among traffic flow, speed {space-mean), and density {(denoting space-mean
speed, i, , as simply u for notational CONvVenience):

q= ek (5.14)
where

g = flow, typically in units of veh/h,
u = speed (space-mean speed), typically in units of mi/h (kmv/h), and
k = densily, typicaily in units of veh/mi (velvkrm).

EXAMPLE 5.2

SOLUTION

B P T T P e B

Vehicle time headways and spacings were measured al a point along a highway, from
a single lane, over the course of an hour. The average vatues were calculated as 2.5 s/veh
for headway and 200 ft/veh (61 m/veh) for spacing. Calculate the average speed of the
traffic.

To calculate the average speed of the traffic, the fundamental relationship in Eq. 5.14
is used. To begin, the flow and density need o be calculated from the headway and
spacing data. Flow is determined from Eq. 5.4 as

|
2.5 s/veh

= .40 veh/s
or, because the data were coilected for an hour,
g = (.40 veh/s x 3600 s/h
= 1440 veh/n

ity is determined from Fq. 5.13 as

qﬁ
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i
&
P
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300 fiiveh

0.005 vel/ll
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5.3 Basic Traffic Stream Models 141

or, applying this spacing over the course of one mile,
(5.13) k = 0.005 veh/ft x 5280 ft/mi
= 26.4 veh/mi
ecause they Now applying Eq. 5.14, after rearranging to solve for speed, gives
the traffic g
u e 3
ow, average %
by the pre-
to the mac- — 1440 veh/h
264 veh/mi
sic relation- - 545 mih
space-mean = e AU
ﬁ Note that the average speed of traffic can be determined directly from the average
(5.14) headway and spacing values, as follows:
w=3
h
. 200 fyveh
2.5 sfveh
= 80 fifs (54.5 mi/h)
hway, from
as2.5s/veh g
speed of the ; 5.3 BASIC TRAFFIC STREAM MODELS

While the preceding definitions and relationships provide the basis for the measure-
ment and calculation of traffic stream parameters, it is essential to also understand the
in Eq. 5.14 interaction of the individual macroscopic measures in order to fully analyze the oper-
cadway and . 3 ational performance of the traffic stream. The models that describe these interactions
are discussed in the following sections, and it will be shown that Eq. 5.14 serves the

important function of linking specific models of traffic into a consistent, generalized
model.

5.3.1 Speed-Density Model

The most intuitive starting point for developing a consistent, generalized traffic model is to
focus on the relationship between speed and density. To begin, consider a section of high-
way with only a single vehicle on it. Under these conditions, the density (vel/mi) will be
very low and the driver will be able to travel freely at a speed close to the design speed of
the highway. This speed is refemred 1o as the free-flow speed because vehicle speed is not
inhibited by the presence of other vehicles, As more and more vehicles begin to use a sec-
tion of highway, the traffic density will increase and the average operating speed of vehi-
i cles will decline from the free-flow value s drivers slow 1o allow for the maneuvers of
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142 Chapter 5 Fundamentals of Traffic Flow and Queuing Theory

other vehicles. Eventually, the highway section will become so congested (will have such a
high density) that the traffic will come to a stop (u = 0), and the density will be determined
by the length of the vehicles and the spaces that drivers leave between them. This high-
density condition is referred to as the jam density,

One possible representation of the process described above is the linear relation-
ship shown in Fig. 5.1. Mathematically, such a relationship can be expressed as

_ 3 - 5.3
U=l (3.15) S
f kj}
where

u = space-mean speed in mi/h (kmvh),
up = free-flow speed in mi/h (kivh),
& = density in veh/mi (veh/km), and
kj = jam density in veh/mi {(veh/km).

The advantage of using a linear representation of the speed-density relationship is
that it provides a basic insight into the relationships among traffic flow, speed, and
density interactions without having these insights clouded by the additional com-
plexity that a nonlinear speed-density relationship introduces. However, it is impor-
tant to note that field studies have shown that the speed-density relationship tends to
be nonlinear at low densities and high densities (those that approach the jam den-
sity). In fact, the overall speed-density relationship is better represented by three
relationships: (1) a nonlinear relationship at low densities that has speed slowly
declining from the free-flow value, (2) a linear relationship over the large medium-

Speed

]
e

Density

Figure 3.1 [Hustration of a typical linear
spead-density relationship.
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5.3 Basic Traffic Stream Models 143

density region (speed declining linearly with density as shown in Eq. 5.15), and (3)
a nonlinear relationship near the jam density as the speed asymptotically
approaches zero with increasing density. For the purposes of exposition, we present
only traffic stream models that are based on the assumption of a linear speed-den-
sity relationship. Examples of nonlinear speed-density relationships are provided
elsewhere [Pipes 1967; Drew 1965].

5.3.2 Flow-Density Model

Using the assumption of a linear speed-density relationship as shown in Bq. 5.15,a
parabolic flow-density model can be obtained by substituting Eq. 5.15 into Eq. 5.14:

.
= Hy k- 5.16
q = Ug 2 (5.16)
where all terms are as defined previously.

The general form of Eq. 5.16 is shown in Fig. 5.2. Note in this figure that the
maximum flow rate, g, represents the highest rate of traffic flow that the highway is
capable of handling. This is referred to as the traffic flow at capacity, or simply the
capacity of the roadway. The traffic density that corresponds to this capacity flow rate
is k.mp, and t‘he coﬁgsPondsng speed I8 ., Equat;ons fOr Gy Ky 00 1, Cam be
derived by differentiating Eq. 5.16, because at maximum flow

dg _ | 1-2k

-
dk k;

= () (5.17)
and because the free-flow speed (uy) is not equal to zero,

(5.18)

4 cap

fiow (veh/h)
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cap i
Density

Figure 8.2 [ustration of the parabolic
fiow-density relationship.
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144 Chapter 5 Fundamentals of Traffic Flow and Queuing Theory

Substituting Eqg. 5.18 into Eq. 5.15 gives

k.
= Up  —A

Heap 3K,

ol
2
and using Eq. 5.18 and Eq. 5.19 in Eq. 5.14 gives

k

Geap ~ UeapReap

533 Speed-Flow Model

Again returning (o the linear speed-density model (Eq. 5.15), a corresponding speed-
flow model can be developed by rearranging Eq. 5.15 to

k=K -4 (5.21)
i
i
and by substituting Eq. 5.21 into Eq. 5.14,

2

g = k} u...!’...t.... (5.22)
He

The speed-flow model defined by Eq. 5.22 again gives a parabolic function, as shown
in Fig. 5.3. Note that Fig. 5.3 shows that two speeds are possible for flows, g, up © the

highway’s capacity, g.,, (this follows from the two densities possible for given flows
as shown in Fig. 5.2). It is desirable, for any given flow, to keep the average space-
mean speed on the upper portion of the speed-flow curve (above i,g,). When speeds
drop below i, raffic is in a highly congested and unstable condition,

Flow (veh/h}

Figure 5.3 Ilustration of the parabolc
speed-flow relationship.
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Flow {veh/h)

H
kz‘zzp j q:‘ap

Dansity Flow {veh/n}

Figure 5.4 Flow-density, speed-density, and speed-flow
relationships (assuming a linear speed-density model),

All of the flow, speed, and density relationships and their interactions are graphi-
cally represented in Fig. 5.4.

EXAMPLE 5.3

A section of highway is known to have a free-flow speed of 55 mi/h (88.5 km/h) and a ca-
pacity of 3300 veh/h. In a given hour, 2100 vehicles were counted at a specified point
along this highway section. If the linear speed-density relationship shown in Eq. 5.15 ap-
plies, what would you estimate the space-mean speed of these 2100 vehicles to be?

SOLUTION
The jam density is first determined from Eq. 5.20 as

Heap
4y
4 %3300
55
= 240.0 veh/mi
Rearranging Eq. 5.22 10 solve for u,

k.
JMZMkjli“f”q =0
He

Substituting,

%‘%{—)uz ~240.0u+2100 = 0
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146 Chapter 5 Fundamentals of Traffic Flow and Queuing Theory

which gives i = 44.08 mi/h or 10.92 mi/h. Both of these speeds are feasible, as shown A SoLuT!
in Fig. 5.3,

54 MODELS OF TRAFFIC FLOW

With the basic relationships among traffic flow, speed, and density formalized, atten-
tion can now be directed toward a more microscopic view of traffic flow. That is,
instead of simply modeling the number of vehicles passing a specified point on a
highway in some time interval, there is considerable analytic value in modeling the
time between the arrivals of successive vehicles (the concept of vehicle time headway
presented earlier). The most simplistic approach to vehicle arrival modeling is to
assume that all vehicles are equally or uniformly spaced. This results in what is
termed a deterministic, uniform arrival pattern. Under this assumption, if the traffic
flow is 360 veh/h, the number of vehicles arriving in any S-minute {ime interval is 30
and the headway between all vehicles is 10 seconds (because /& will equal 3600/g).
However, actual observations show that such uniformity of traffic flow is not always
realistic because some 5-minute intervals are likely to have more or less traffic flow
than other 5-minute intervals. Thus a representation of vehicle arrivals that goes
beyond the deterministic, uniform assumption is often warranted.

5.4.1 Poisson Model

Models that account for the nonuniformity of flow are derived by assurming that the
pattern of vehicle arrivals (at a specified point) corresponds to some random process.
The problem then becomes one of selecting a probability distribution that is a reason-
able representation of observed traffic arrival patterns. An example of sach a distribu-
tion is the Poisson distribution (the limitations of which will be discussed later),
which is expressed as

Ho—AL

P(n) = (_’%‘E— (5.23)

where

P(n} = probability of having »n vehicles arrive in time ¢,
A = average vehicle flow or arrival rate in vehicles per unit time,
¢ = duration of the time terval over which vehicles are counted, and
¢ = base of the natural logarithm (e = 2.718).

EXAMPLE 54

An observer counts 360 velvh at a specific highway location. Assuming that the amival
of vehicles at this highway location is Poisson distributed, estimate the probabilities of
having 0, 1, 2, 3, 4, and 3 or more vehicles armiving over a 20-second time interval. e
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54 Models of Traffic Flow 147
« shown SOLUTION
The average arrival rate, A, is 360 velvh, or 0.1 vehicles per second (veh/s). Using this in
Eq. 5.23 with ¢ = 20 seconds, the probabilities of having exactly 0, 1, 2, 3, and 4 vehi-
N cles arrive are
0 _-0.1(20)
P(O) . (O.I XZ{()% [5 — M
1 -0.1(20)
4, e p(1y = (&1 e = 0271
jnt on a 2 D100
cling the Py = (@1x 0 = 0271
beadway .3 -0.1(20)
ing 1s to = (0.1x20)°e "
1 what is P(3) 3 0.180
the traffic aeyyd =0.1(20)
51.'\"3,1 iS 30 P(4) . @.1 X 2(33; 24 01}90
1 3600/g). ) :
ot always For five or more vehicles,
-affic flow Pn=5)=1-Pn<s)
that goes =1 —=0.135 - 0271 - 0.271 — 0.180 — 0.090
= (053
A histogram of these probabilities is shown in Fig. 5.5,
ng that the (0.271) (0.271)
I Process. . e
S 2 reason- e E
1 a distribu- DR
ssed later),
(5.23)

Number of vehicles arriving in a
20-5 time interval
(probabilities in parentheses)
Figure 5.5 Histogram of the Poisson disiribution
for A = 0.1 vehicles per second.
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148 Chapter 5 Fundamentals of Traffic Flow and Queuing Theory

f EXAMPLE 5.5

. Traffic data are collected in 60-second intervals at a specific highway location as

: shown in Table 5.1. Assuming the traffic arrivals are Poisson distributed and con-

! tinue at the same rate as that observed in the 15 time periods shown, what is the
probability that six or more vehicles will arrive in each of the next three 60-second
time intervals (12:15 pM. to 12:16 PM., 12:16 p.M. to 12:17 pm., and 12:17 M. (O
12:18 p.m.)?

SOLUTION
Tuble 5.1 shows that a total of 101 vehicles arrive in the 15-minute period from 12:00
M. to 12:15 .. Thus the average arrival rate, A, is 0.112 vel/s (101/900). As in Exam-
ple 5.4, Eq. 5.23 is applied to find the probabilities of exactly 0, 1, 2, 3, 4, and 5 vehicles
arriving.

- Applying Eq. 5.23, with A = 0.1 12 veh/s and ¢ = 60 seconds, the probabilities of hav-

’ ing 0, 1, 2,3, 4, and 5 vehicles arriving 1 a 60-second time interval are (using A7 = 6.733)

0 ~6733

Pl = @Iﬁ%:iﬂf = 0.008

PQ) = @%—fﬁj = 0,027

P(3) = 6.7333?:3“6'7?’3 ~ 0.0606

Py = §6.7334)Te—6'733 - 010

p(s) = g5.7335f:e“5'”3 - 0137 L

The summation of these probabilities is the probability that 0 to 5 vehicles will arrive
in any given 60-second time interval, which is

3
Y pny

a=0
0.0012 = 0.008 + 0.027 + 0.0606 -~ 0.102 + 0.137

i

Pin =3}

il

= (3.3358

So 1 minus P(n < 3) is the probability that 6 or more vehicles will artive in any
60-second time interval, which is

oot e AR

e
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34  Models of Traffic Flow 149

Table 3.1  Observed Traffic Data for Example 5.5
Jocation as Time period Observed number of vehicles
ze(? and con- 12:00 PM. t0 12:01 pM. 3
-, what is the 12:01 PM. t0 12:02 PM. 5
i d 12:02 M to 12:03 P 4
- ee 60-secon 12:03 PM. to 12:04 v 10
12:17 pm. to 12:04 P.M. to 12:05 pvL 7
12.05PM. to 12:06 PV 4
12206 PM t0 12:07PM. 8
12:07PM to 12:08 PM. 11
d from 12:00 12:08 P.M to 12:09 PM, 9
%1, As in Exam- 12209 M 0 12:10 P 5
‘and 5 vehicles I2Z21I0PM 0 I2:11 P 3

12:11eM 0 12:12PM
IZ12eMt012:13PM
12213 eM 0 12:14PM
Z:ldpMt012:15p M

-bilities of hav-
g A =6.733)

—
[N IV Bt

Pn=6)= 1~ Pn=<5)
1—0.3358
0.6642

The probability that 6 or more vehicles will arrive in three successive time intervals
(t1, &, and 1) is simply the product of probabilities, which is

il

]

3
P(n = 6) for three successive time periods = HP(n = 6)
=1
(0.6642)
= (.293

If

o5 will arrive The assumption of Poisson vehicle arrivals also implies a distribution of the time
Ciy Wi )

intervals between the arrivals of successive vehicles (time headway). To show this,
note that the average arrival rate is

A s 0 {(5.24)

137 where

A = average vehicle arrival rate in veh/s,
g = flow in veh/h, and
3600 = number of seconds per hour.

1 amrive in any
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Substituting Eg. 5.24 into Eq. 5.23 gives

el =gl 3600
(gt 36003
!

P(n) (5.25)
Note that the probability of having no vehicles arrive in a time interval of length «,
P(03, is equivalent to the probability of a vehicle headway, A, being greater than or
equal to the tme interval £. So from Eq. 5.25,

POy=Ph = 1)
= o gt/360 (3.26)

This distribution of vehicle headways is known as the negative exponential distribu-
Hon and is often simply referred 1o as the exponential distribution,

EXAMPLE 5.6

SOLUTION

Consider the traffic situation in Example 5.4 (360 veh/h;. Again assume that the vehi-
cle mrivals are Poisson distributed. What is the probability that the gap between suc-
cessive vehicles wiil be less than 8 seconds, and what is the probability that the gap
between successive vehicles will be between 8 and 10 seconds?

By definition, Plh <) = 1 — Plh = 1). This expression gives the probability that the
2ap will be fess than 8 seconds as
Plh< 8 =1 — ¢ 38360
=] — {1,449
= 0551

To determine the probability that the gap will be berween 8 and 10 seconds, compute
the probability that the gap will be greater than or equai to 10 seconds:

______ AL 3600

Plh= 1=
= {1368
So the orobability thar the gap will be berween 8 and 10 seconds 15 0,081 (1
I o o et
4.551 — (0.368).

SRR

S

o

R

1o help in visualizing the shape of the exponential distwibution, Fig. 5.6 shows the
probability distribution implied by Bq. 5.26, with the flow, ¢, ecual to 360 vehvh as m
Example 34
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Plhzn = efqr!&‘:"}GG

Probabitity

Q 5 10 15 20 25 30
Time, ¢

Figure 5,6 Exponentially distributed probabilities
of headways greater than or equal to , with ¢ = 360 veh/h.

Limitations of the Poisson Model

Empirical observations have shown that the assumption of Poisson-distributed traffic
arrivals is most realistic in lightly congested traffic conditions. As traffic flows
become heavily congested or when traffic signals cause cyclical traffic stream distur-
bances, other distributions of traffic flow become more appropriate. The primary limi-
tation of the Poisson model of vehicle arrivals is the constraint imposed by the Poisson
distribution that the mean of period observations equals the variance. For example, the
mean of period-observed traffic in Example 5.5 is 6.733 and the corresponding vari-
ance, o, is 7.210. Because these two values are close, the Poisson model was appro-
priate for this example. If the variance is significantly greater than the mean, the data
are said to be overdispersed, and if the variance is significantly less than the mean, the
data are said to be underdispersed. In either case the Poisson distribution is no longer
appropriate, and another distribution should be used. Such distributions are discussed

in detail in more specialized sources [Transportation Research Board 1975; Poch and
Mannering 1996].

QUEUING THEORY AND TRAFFIC FLOW ANALYSIS

The formation of traffic queues during congested periods is a source of considerable
time delay and results in a loss of highway performance. Under extreme conditions,
queuing delay can account for 90% or more of a motorist’s total trip travel time. Given
this, it is essential in traffic analysis that one develop a clear understanding of the
characteristics of queue formation and dissipation along with mathematical formula-
tions that can predict quening-related elements,

As 1s well known, the problem of queuing is not unique to traffic analysis. Many
non-transportation fields, such as the design and operation of industrial plants, retail
stores, service-oriented industries, and computer networks, must also give serious
consideration to the problem of queuing. The impact that queues have on performance

far e R R R R
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and productivity in manuf acturing, retailing. and other fields has led 1o numerous the-
ories of quening behavior (the process by which queues form and dissipate). As will
e shown, the models of traffic flow presented carlier (uniform, deterministic arrivals
and Poisson arrivals) will form the basis for stdying traffic queues within the more
general context of quening theory.

5.5.1 Dimensions of Queuing Models

The parpose of traffic queuing models is to provide a means to estimate important
measures of highway performance, including vehicle delay and traffic quene lengths.
Such estimates are critical to roadway design (the required length of ieft-turn bays and
the number of lanes at intersections) and traffic operations control, including the tim-
ing of traftic signals at intersections.

Queuing models are derived from underlying assumptions regarding arrival pat-
terns, departure characteristics, and queue disciplines. Traffic arrival patterns were
explored in Section 5.4, where, given an average vehicle arrival rate {A), two possible
distributions of the time between the arrival of successive vehicles were consideted:

1. Equal tme intervals {derived from the assumption of uniform, deterministic
arrivais)

2. Exponentially distributed time intervals (derived from the assumption of Poisson-
distributed arrivals)

In addition to vehicle arrival assumptions, the derivation of traffic queuing models
requires assumptions relating to vehicle departure characteristics. Of partcular inter-
ast is the distribution of the armount of Gme it takes a vehicle to depart—for example.
{he time to pass through an intersection at the beginning of a green signal, the fime
required to pay a toll at a toll booth, or the fime a driver takes before deciding to pro-
ceed after stopping at a stop sign. As was the case for arrival patterns, given an aver-
age vehicle departure rate (denoted as u, in vehicles per unit time), the assurnption of
a deterministic or exponential distribution of departure ttmes is appropriate.

Another important aspect of quening models is the number of available departure
channels. For most traffic applications only one departure channel will exist, suchas a
highway lane or group of lanes passing through an intersection. However, muliiple
departure channels are encountered in some traftic applications, such as at toll booths
on turnpikes and at enirances © bridges.

The final necessary assumption relates to the queue discipline. In this regard, iwo
options have been populazized in the development of queuing models: first-in, first-out
(FIFQ), indicating that the first vehicle to arrive is the first o depart; and last-in,
Gist-out (LIFOY, indicating that the last vebicle to arrive is the first to depait. For vir-
wally all waffic-oriented queues, the FIFQ queaing discipline is the more appropriate
of the two,

Queuing models are often identified by three alphanumeric values. The firse value
‘ndicates the arrival rale assumption, the second value gives the departure rale
assurmption, and the third value indicates he number of departure chamnels. For traific
arrival and departure assumptions, the aniform, deterministic distribution is denoted D
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and the exponential distribution is denoted M. Thus a D/D/1 queuing model assumes
deterministic arrivals and departures with one departure channel. Similarly, an M/D/1
queuing model assumes exponentially distributed arrival times, deterministic depar-
ture times, and one departure channel.

5.5.2 DIDI/1 Queuing

The case of deterministic arrivals and departures with one departure channel {D/D/1
queue) is an excellent starting point in understanding queuing models because of its
simplicity. The D/Df1 quece lends itself to an inmitive graphical or mathematical
solution that is best illustrated by an example.

EXAMPLE 57

SOLUTION

AR IR

Vehicles arrive at an entrance to a recreational park. There is a single gate (at which all
vehicles must stop}, where a park attendant distributes a free brochure. The park opens
at 8:00 a.M., at which time vehicles begin to arrive at a rate of 480 veh/h. After 20 min-
utes the arrival flow rate declines to 120 veb/h, and it continues at that level for the re-
mainder of the day. If the time required to distribute the brochure is 15 seconds, and
assuming D/Df1 queuing, describe the operational characteristics of the queue.

Begin by patting arrival and departure rates into cornmon units of vehicles per minute:
_ 480 veh/h
60 min/h

_ 120 veh/h
60 min/h

A = 8§ veh/min  for 7 = 20 min

= 2veh/mim forr> 20 min

o= 008N in forall s

15 sfveh
Equations for the total number of vehicles that have arrived and departed up to a spec-
ified time, ¢, can now be written. Define ¢ as the number of minutes after the start of the
gueuing process (in this case the number of minutes after 8:00 a.m.). The total number
of vehicle arrivals at time ¢ is equal to

8 fort =20 min

and

160 + 2r — 20y for > 20 mun

Similarly, the number of vehicle departures is

4t foralls
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Figure 5.7 DID/1 queuing diagram for Example 5.7.
The preceding equations can be illusirated graphically as shown in Fig. 5.7. When the

arrival curve is above the departure curve, a queue condition exists. The point at which
the arrival curve meets the departure curve is the moment when the queue dissipates (no
more queue exists}. In this example, the point of queue dissipation can be determined
graphically by inspection of Fig. 5.7, or analytically by equating appropriate artival and
departure equations, that is,

160+ 20r =2 =4

Solving for f gives ¢ = 60 minutes. Thus the queue that began to form at 8:00 a.m. will dis-
sipate 60 minutes later (9:00 ), at which time 240 vehicles will have arrived and de-
parted (4 veh/min X 60 min).

Another aspect of interest is individual vehicle delay. Under the assumption of 2
FIFO queuing discipline, the delay of an individual vehicle is given by the horizontal
distance between artival and departure curves starting from the time of the vehicle’s
arrival in the gueue. So, by iaspection of Fig. 5.7, the 160th vehicle to arrive will have
the longest delay, 20 minutes (the longest horizontal distance between arival and
departure curves), and vehicles amving after the 230th vehicle will encounter no
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queue delay because the queue will have dissipated and the departure rate will con-
tinue to exceed the arrival rate. It follows that with the LIFO queuing discipline, the
first vehicle to arrive would have to wait until the entire queue clears (60 minutes of
delay).

'The total length of the queue at a specified time, expressed as the number of vehicles,
is given by the vertical distance between arrival and departure curves at that time. For
example, at 10 minutes after the start of the queuing process (8:10 a.M.) the queue is 40
vehicles long, and the longest queue (longest vertical distance between arrival and de-
parture curves) will occur at + = 20 minutes and is 80 vehicles long (see Fig. 5.7).

'Total vehicle delay, defined as the summation of the delays for the individual vehicles,
is given by the total area between the arrival and departure curves (see Fig. 5.7) and, in this
case, is in units of vehicle-minutes. In this example, the area between the arrival and depar-
ture curves can be determined by summing triangular areas, giving total delay, D, as

D, = 1(80 X 20) + 1 (80 X 40)

2400 veh-min

Finally, because 240 vehicles encounter queuing delay (as previously determined), the
average delay per vehicle is 10 minutes (2400 veh-min/240 veh), and the average
queue length 1s 40 vehicles (2400 veh-min/60 min).

EXAMFLE 5.8

SOLUTION

After observing arrivals and departures at a highway toll booth over a 60-minute time
period, the observer notes that the arrival and departure rates (or service rates) are deter-
ministic, but instead of being uniform, they change over time according to a known
function. The arrival rate is given by the function A() = 2.2 + 0.17r — 0.0032£, and the
departure rate is given by u(f) = 1.2 + 0.07¢, where 7 is in minutes after the beginning
of the observation period and A(#) and w(z) are in vehicles per minute. Determine the to-
tal vehicle delay at the toll booth and the longest queue, assuming D/D/1 queuing.

Note that this problem is an example of a time-dependent deterministic queue because
the deterministic arrival and departure rates change over time. Begin by computing the
time 1o queue dissipation by equating vehicle arrivals and departures:

-

J 2.2+ 0.171—0.00327ds j 1240071 ds
¢ G

226+ 0,085 - 0.001071 = 1.20+0.035¢
—0.00107 + 0058 +1 = 0




o
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which gives 7 = 61.8 minutes. Therefore. the total vehicle delay (the area between the
atrival and departure functions) is
FELE A ) G618 e )
D= | 7220 00857 = 0001078 dr J 126 -+ 0.0357 dr
0 0

3

i

61
L17 + 00283 ~ 0.0002675¢* ~ 0.6 — 001177,

~0.0002675(61.8)* + 0.0166(61.8)° + 0.5(61.8)

1925 8 veh-min

i

The queue length (in vehicles) at any time 1 is given by the function

-

)’2.2 007 - 000322 dt — j 12 ~ 007 dr
4] ]

t

s

= ~G.00107F + 0052 + 1

Solving for the time at which the maximum queue length occurs,

‘f—%—fl = —0.003212 + 0.1 + 1 = 0

r = 39.12 min

Substituting with # = 39,12 minutes gives the maximum queue length:

L3912

0(39.12) = —0.001077 ~ 0057 + 1|

= ~0.00107(39.12 = 0.03(39.127 + 29.12

= 51.58 veh

BT

553 M/D/1 Queuing

The assumption of exponentially distributed times between the arrivals of succes-
sive vehicles (Poisson arrivals) will, in some cases. give a more realistic representa-
ton of taffic flow than the assumption of uniformly distributed arrival times.
Therefore, the M/D/1 queue (exponentially distributed arrivals, deterministic depar-
tures. and one departure channel) has some Limportant applications within the traffic
analyss field. Although a graphical solution w an MID/ queue is difficult, a math-
eratical solution Is straightiorward, Defining a new term (waflic intensity) fur the

ratio of average arrival o departure rates as
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where

p = traffic intensity, unitless,
A = average arrival rate in vehicles per unit time, and
u = average departure rate in vehicles per unit time,

and assuming that pis less than 1, it can be shown that for an M/D/1 queue the follow-
ing queuing performance equations apply:

2

0 = —F 528

. Q=3 (5.28)

- .S e w=_—" (5.29)
WIS e 2u(1—p) :

P ] -2 -
f""‘l\‘ .—\-:{-A——: P+J‘ ..._..,.F F= WQ L (5.30)
24 (1) 2p1 - p)
where i R ol
20 {~£)

(J = average length of queue in vehicles,

W = average waiting time in the queue, in unit time per vehicle,
f = average time spent in the system (the summation of average waiting time in
the queue and average departure time), in unit time per vehicle, and
Other terms are as defined previously.

i

It is important to note that under the assumption that the traffic itensity is less
than 1 (A < w), the D/D/1 queue will predict no queue formation. However a queuning
model that is derived based on random arrivals or departures, such as the M/D/1 quening
model, will predict queue formations under such conditions. Also, note that the M/D/1
queuing model presented here is based on steady-state conditions (constant average
arrival and departure rates), with randomness arising from the assumed probability
distribution of arrivals. This contrasts with the time-varying deterministic quening
case, presented in Example 5.8, in which arrival and departure rates changed over
time, but randomness was not present.

Consider the entrance to the recreational park described in Example 5.7. However,
let the average arrival rate be 180 veb/h and Poisson distributed (exponential times
between arrivals) over the entire period from park opening time (8:00 A.M.) until
closing at dusk. Compute the average length of queue (in vehicles), average waiting
time in the queue, and average time spent in the system, assuming M/D/1 queuing.
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Puiting arrival and departure rates into common units of vehicles per minute gives ‘
A= M = 3 vehmin for all’
60 min/h
g = S0 g etymin foralif
15 s/veh
and
3v
p = Ao dyehimin _ g5
w4 veb/min
For the average length of queue (in vehicles), Eq. 5.28 is apphied:
3
= 075
Q VI T
2(1-0.75)
= 1,125 veh
For average waiting time in the queue, Eq. 5.29 gives
W o= 0.73
2(4){1-0.75)
= .375 min/veh
For average e spent i (e system [queue dme plus depariure (service) dmel, Ea. 33018
used:
= ____;_:_Q;Zi_m_
2(43(1-0.75)
= (.623 nin/veh
or, alternatively, because the depariure (service) Ume is 1/u (the 0.25 minutes it takes
the park attendant to distribute the brochure},
D |
;=W o -
21
JEP
= (375 + -
4
= .625 v/
5854 MM Queuing
EN géut.i.ﬂ i moded thal &
depariure times 0 ad idition
\.;&Lu\,, i u'g"}{! licable 1 osOINE ailhilc o
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uted departure patterns might be a reasonable assumption at a toll booth, where some
arriving drivers have the correct toll and can be processed quickly, and others do not
have the correct toll, producing a distribution of departures about some miean depar-
ture rate. Under standard M/AM/1 assumptions, it can be shown that the following
queuing performance equations apply (again assuming that pis less than 1);

2
J = ifg‘_m (5.31)

(8.32)

(5.33)

where

O = average length of queue in vehicles,

W = average waiting time in the queue, in unit time per vehicle,

f = average time spent in the system (% + 1/ A, i unit time per vehicle, and
Other terms are as defined previously.

EXAMPLE 5.10

Assume that the park attendant in Examples 5.7 and 5.9 takes an average of 15 sec-
onds to distribute brochures, but the distribution time varies depending on whether
0 park operating policies. Given an average ar-
e 5.9, compute the average length of queue (in

+

SOLUTION

Using the average arrival rate, departure rate, and teaffic mtensity as determined in Ex-
ample 5.9, the average length of queue is (from Eg.5.31)

2
7 .. 0.75°
¢ 1--0.75
= 2.25 veh
the average waiting time in the queue is (from Eq. 5.32)

3
404 -3)

= (3,75 minfveh

W=

2 Eégﬁ%?%: % : e o 2 SR RS D e,




oo e e

® PIASSE S BT VIR AR LSS RN S

160 Chapter 5 Fundamentals of Traffic Flow and Queuing Theory

and the average ime spent in the sysien is {from £q. 3.33)
'f == .._}«-.—
4-3

= | min/veh

555 M/M/N Queuing

A more general formutation of the M/M/1 queue is the M/MIN queue, where N is the
total pumber of departure channels. M/MIN queuing s a reasonable assumption at
toll booths on turnpikes or at toll bridges, where there is often more than one depar-
rure channe} avatlable (more than ope twil booth open). A parking lot is another
example, with N being the number of parking stalls in the 1ot and the departure rate,
i, being the exponentially distributed times of parking duration. M/MIN queuing is
atso frequently encountered in non-transportation applications such as checkout
lines at retail stores, security checks at airports, and so o

The following equations describe the operational characteristics of M/IMIN queu-
ing. Note (hat unlike the equations for MU and MIMI1, which require that the traffic
ingensity, p. be less than 1. the following equations atlow p he greater than 1 bl
apply only when o/ N (which is called the utlization factor) is less ihan L.
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where

Py, = probability of having no vehicles in the system,
P, = probability of having n vehicles in the system,
P, = probability of waiting in a queue (the probability that the number of
vehicles in the systern is greater than the number of departure channels),

n = number of vehicles in the system,
N = number of departure channels,
n, = departure channel number, and
g = traffic intensity {A/ ).
’f ; N+l
i . P Y
Nis the 0 = =2t 1 (5.38)
ption at LI =p/N)
e depar- —
another wo=btd 1 (5.39)
ure rate, A 13
euing is -
‘heckout r=te (5.40)
N queu- where
he maffic
@n 1 but ( = average length of queue {in vehicles),
W = average waiting time in the queue, m unit time per vehicle,
F = average time spent in the system, in unit time per vehicle, and
(5.34) Orther terms are as defined previously.

EXAMPLE 511

At an entrance to a toll bridge, four toll booths are open. Vehicles arrive at the bridge at
an average rate of 1200 veh/h, and at the booths, drivers take an average of 10 seconds to
pay their tolis. Both the arrival and departure rates can be assumed to be exponentially
distributed. How would the average queue length, time in the systerm, and probability of
wailing in a queue change if a fifth toll booth were opened?

SCLUTEON
Using the equations for M/M/N queuing, we {irst compuie the four-booth case. Note that
= 6 veh/min and A = 20 veh/min, and therefore p = 3,333, Also, because /N = 0.833
{which is less than 1), Eqgs. 5.34 to 5.40 can be used. The probability of having no ve-
hicles in the system with four booths open (using Eq. 5.34) is

” s SR 2 R e s o S S N Py Lt e A S bl R
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g = 3 4§
(03333 3333 3333 amy
T TR T g6

= 0.0213

The average queue length is (from Eq. 5.38)

7o 0021333330 1
- 44 0667

= 3.287 veh
The average time spent in the system is (from Eq. 5.40)
3.333 + 3,287
20

(.331 min/veh
And the probability of having to wait in a queue is (from Eg. 5.37)
_ 0.0213(3.333)°
N 414(0.1667)
= (1548
With a fifih booth open, the probability of having no vehicles in the system is (from

I

Fa. 5345

i

1
Pi'; = > 5 : 3
1333333337 3333 3333° 3333
Y 34 3N0.2333

i.
= (L0318

[

The average queue lengih is (rom Bg. 5.38)

f}" =

2 iz

e spent in the syswem is (from Eg. 5.40)

_ 3333+ 0.654

' 24
= {3,199 min/veh

[
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So opening a fifth booth would reduce the average queue length by 2.633 veh (3.287 —
0.634), the average time in the system by 0.132 min/veh (0.331 — 0.199), and the prob-
ability of waiting in a queue by 0.330 (0.548 — 0.218).

EXAMPLE 5.12

A convenience store has four available parking spaces. The owner predicts that the du-
ration of customer shopping (the time that a customer’s vehicle will occupy a parking
space) is exponentially distributed with a mean of 6 minutes. The owner knows that in
the busiest hour customer arrivals are exponentially distributed with a mean arrival rate

of 20 customers per hour. What is the probability that a customer will not find an open ' ’§§
parking space when arriving at the store? ' % :
SOLUTION , o

Putting mean arrival and departure rates in common units gives u = 10 vehvh and A =
20 veh/h. So p = 2.0, and because p/N = (0.5 (which is less than 1), Egs. 534 t0 5.40
can be used. The probability of having no vehicles in the system with four parking
spaces available (using Eq. 5.34) is

Py = 2 o3 7 o
2 2 2 2 s
m - 1+ 1 + 57 + 3 + m ,,%_%
: = 0.1304
g};’t;s; the probability of not finding an open parking space upon arrival is {from Eq. i
013042
PN 414(0.5)
= 0087 .
e
5.6 TRAFFIC ANALYSIS AT HIGHWAY BOTTLENECKS e

Some of the most severe congestion problems occur at highway bottlenecks, which
are defined as a portion of highway with a lower capacity (4eqp) than the incoming
section of highway. This reduction in capacity can originate from a number of
sources, including a decrease in the number of highway lanes and reduced shoulder
widths (which tend to cause drivers to slow and thus effectively reduce highway
capacity, as will be discussed in Chapter 6). There are two general types of traffic
bottlenecks—those that are recurring and those that are incident induced. Recurring
boitlenecks exist where the highway itself limits capacity—for exaraple, by a physi-
cal reduction in the number of lanes, Traffic congestion at such bottlenecks results

R M K 8 A L 1 5 B a0 oo 50 o 50
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from recurring traffic flows that exceed the vehicle capacity of the highway in the
bottleneck area. In contrast. incident-induced bottlenecks oceur as a result of vehi-
cle breakdowns or accidents that effectively reduce highway capacity by resiricting
the through movement of traffic. Because incident-induced bottlenecks are unantic-
ipated and temporary in nature, they have features that distinguish them from recur-
ring bottlenecks, such as the possibility that the capacity resulting from an incident-
induced bottleneck may change over time. For example. an accident may initially
stop traffic flow completely, but as the wreckage is cleared, pariial capacity (one
lane open) may be provided for a period of time before full capacity is eventually
restored. A [eature shared by recurring and incident-induced bottlenecks is the
adjustment in traffic flow that may occur as travelers choose other routes and/or dif-
ferent trip departure times, to avoid the bottleneck area. in response to visual infor-
mation or traffic advisories.

The analysis of traffic flow at bottlenecks can be undertaken using the queuing
models discussed in Section 5.5. The most intuitive approach to analyzing traffic con-
gestion at botilenecks is to assume D/D/] queuing.

EXAMPLE 5.13

SOLUTION

Asnincident occurs on a freeway that has a capacity in the northbound direction, before
the incident, of 4000 veh/h and a constant flow of 2900 veh/h during the morning com-
mute (no adjustments to tratfic flow result from the incident). At 8:00 a.m. a traffic
accident closes the freeway to all traffic. At 8:12 a.Mm. the freeway is partially opened
with a capacity of 2000 veh/h. Finally, the wreckage is removed, and the freeway is
restored to full capacity (4000 veh/h) at 8:31 a. M. Assume D/0/ 1 queuing 1o determine
time of queue dissipation, longest queue length, total delay, average delay per vehicle,
and longest wait of any vehicle (assuming FIFO).

Let u be the full-capacity departure rate and s, be the reswictive partial-capacity de-
parture rate. Putting arrival and departure rates in common units of vehicles per
mimntite,

_ 00 velv/h
g o= Do YR

50 a/h 66.67 vel/min

H

200 veh/h .
- —— = 3333 veh/min
Fr = T8 v '
A= M = 4833 veh/imin
&0 min/h

The arrival rate is constant over the entire time period. and the wtal number of vehicles
is equal 1 A where 7 is the number of minutes after £:00 st The total number of de-
oarling vehicles is

L 3L e X0 3 5 o gt ot 1
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0 for r < 12 min
wit —12) for 12 min <7 < 31 min
633.33 + ufr — 31) for £ > 31 min

Note that the value of 633.33 in the departure rate function for 7> 31 is based on the pre-
ceding departure rate function [33¥3(31 — 12)]. These arrival and departure rates can
be represented graphically as shown in Fig. 5.8. As discussed in Section 5.5, for D/D/1
queuing, the queue will dissipate at the intersection point of the arrival and departure
curves, which can be determined as

At = 63333 + p(r—31) or r=78.16 min Gust after 9:18 AM.)

At this time a total of 3777.5 vehicles (48.33 X 78.16) will have arrived and departed
(for the sake of clarity, fractions of vehicles are used). The longest queue (longest ver-
tical distance between arrival and departure curves) occurs at 8:31 A.M. and is

Oy = M — 0t — 12)
= 48.33(31) - 33.33(19)
= 865 veh

: Total vehicle delay is (using equations for triangular and trapezoidal areas to calculate
sfore : the total area between the arrival and departure curves)

::flflilc ' D, = 1{(12)(580) + %(580 + 1498.33)(19) — | (19)(633.33)
ened ' i )
ray is g + %(1498.33 — 633.33)(78.16 — 31)
‘mine :
hicle, ; = 37,604.2 veh-min

e
R
S :

R

{78.16, 3777.5}

ty de- |
Y . Point of
3§ per queus

dissipation

Longest
vehicle
deiay
{FIFO} .

Arrival curve

Nuinber of vehicles

{131, 8633.33) \ Longest
" vehicle
(12,580; queue
{31,633.33}

i i | i
30 40 50 50
Time {in minutes after 8:00 a.w.)

ehicles s
¢ of de-

Figare 5.8 D/D/1 queuing diagram for Example 5.13.
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The average delay per vehicle is 995 min (37,604.2/3777.3). The longest wail of any
vehicle (ihe longest horizontal distance between the arrival and departure curves). as-
suming a FIFO queuing discipline, will be the delay time of the 633.33rd vehicle to ar-
cive. This vehicle will arrive 13.1 minutes (633.33/48.33) after 8:00 a.m. and will depart
at 8:31 A.m., being delayed a total of 17.9 min.

NOMENCLATURE FOR CHAPTER 5
D deterministic arrivals or departures Q... maximum length of queue
D, otal vehicle delay § vehicle spacing
h vehicle time headway t fdme
k traffic density r average time spent in the system
traffic jam density u space-mean speed (also denoted # )
k,., waffic density at capacity i spot speed for vehicle £
roadway length i free-flow speed
exponentially distributed arrivals or departures u,., speedat capacity
pumber of vehicles B,  space-mean speed {also denoted simply as &)
departure channel mumber #,  tme-nean speed
total number of departure channels 5 average Lime wailing in e queue
traffic flow A arrival rate
4oy traffic flow at capacity {maxirun traffic flow: m departure rate
o fength of queue o watfic intensity

] average length of queue
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PROBLEMS

5.1 On a specific westbound section of highway, stud-
ies show that the speed-density relationship is

L3150
U

Rl
A

H
H
H
!

L 3

it is known that the capacity is 3800 veb/h and the jam
density is 225 vel/mi. What is the space-mean speed
of the traffic at capacity, and what is the free-flow
speed?

5.2 A section of highway has a speed-flow relation-
ship of the form

g = au’ + bu
It is known that at capacity (which is 2900 veh/h) the
space-mean speed of traffic is 30 mih. Determine the
speed when the flow is 1400 veh/h and the free-flow
speed.
5.3 A section of highway has the following flow-density
relationship:

g = 50k — 0.156K%

What is the capacity of the highway section, the speed
at capacity, and the density when the highway is at
one-quarter of its capacity?

3.4 Assume you are observing iraffic in a single lane
of a highway at a specific location. You measure the
average headway and average spacing of passing vehi-
cles as 3 seconds and 150 ft, respectively. Calculate
the flow, average speed, and density of the traffic
stream in this lane.

3.5 Assume you are an observer standing at a point
along a three-lane roadway. All vehicles in lane | are
traveling at 30 mi/h, all vehicles in lane 2 are traveling
at 45 mi/h, and all velicles in lane 3 are waveling at 60
mi/h. There is also a constant spacing of 0.5 mile be-
mween vehicles. If you collect spoi speed data for all
vehicles as they cross your observation point, for 30
minutes, what will be the time-mean speed and space-
mean speed for this traffic stream?

3.6 Four race cars are traveling on a 2.5-mile tii-oval
track. The four cars are raveling at constant speeds of
195 mifh, 190 mifh, 185 mi/th, and 180 mi‘fh, respec-
tively. Assume you are an observer standing & 2 point
on the track for a period of 30 minutes and are record-
ing the instantanecus speed of each vehicle as it
¢rosses your point. What is the time-mean speed and
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space-mean speed for these vehicles for this time pe-
riod? (Note: Be careful with rounding.) '

5.7 For Problem 3.6, calculate the space-mean speed
assuming you were provided with only an aerial photo
of the circling race cars and the constant ravel speed
of each of the vehicles.

5.8 An observer has determined that the time head-
ways between successive vehicles on a section of
highway are exponentially distributed and that 60% of
the headways between vehicles are 13 seconds or
greater. If the observer decides to count eaffic m 30-
second time intervals, estimate the probability of the
observer counting exactly four vehicles in an interval.

5.9 Ar a specified point on a highway, vehicles are
known to arnive according to a Poisson process. Vehi-
cles are counted in 20-second intervals, and vehicle
counts are taken in 120 of these time intervals. It is
noted that no cars arrive in 18 of these 120 intervals.
Approximate the number of these 120 intervals in
which exactly twee cars arrive.

5.10 For the data collected in Problem 5.9, estimate
the percentage of time headways that will be 10 sec-

onds or greater and those that will be less than 6 sec-
onds.

5.11 A vehicle pulls out onto a single-lane highway
that has a flow rate of 280 veh/h (Poisson disiributed).
The driver of the vehicle does not lcok for oncoming
traffic. Road conditions and vehicle speeds on the
highway are such that it takes 1.5 seconds for an on-
coming vehicle to siop once the brakes are applied.
Assuming a standard driver reaction time of 2.5 sec-
onds, what is the probability that the vehicle pulling
out will get in an accident with oncoming traffic?

5.12 Consider the condittons in Problem 5.11. How
short would the driver reaction times of oncoming ve-
hicles have to be for the probability of an accident to
equal 0.157

5.13 A wll booth on a turnpike is open from 8:00 AM.
t0 12 midnight. Vehicles start arriving at 745 AM ata
uniforin deterrmnistic rate of six per minute unti 8:13
A and from then on at two per minute. If vehicles
are processed at a uniform determainistic rate of six per
minute, determine when the queue will dissipate, the
total delay, the maximum gueue length (in vehicles),
the longest vehicle delay under FIFO, and the longest
vehicie delay under LIFO.
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5.14 Vehicles begin to arrive at a parking lot at 6:00
AM. at a rate of eight per minute. Due to an accident
on the access highway, no vehicles amrive from 6:20to
6:30 AM. From 6:30 AM. on, vehicles amive at a rate
of two per minute. The parking lot attendant processes
incoming vehicles (collects parking fees) at a rate of
four per minute throughout the day. Assuming D/D/1
queuing, determine total vehicle delay.

515 The arrival rate at a parking lot is 6 veh/min. Ve-
hicles start arriving at 6:00 .M., and when the queue
reaches 36 vehicles, service begins. If company policy
is that total vehicle delay should be equal to 500 veh-
min, what is the departure rate? (Assume IYD/1 queu-
ing and a constant service rate.)

516 Vehicles begin to arrive at a toll booth at 8:30
AM. with an arrival rate of Mf) = 4.1 + Q.01 [with ¢
in mirutes and A(f) in vehicles per minute]. The toll
tooth opens at 9:00 AM. and processes vehicles at a
rate of 12 per minute throughout the day. Assuming
DID/1 queuing, when will the queue dissipate and
what will be the total vehicle delay?

.17 Vehicles begin to arrive at a toll booth at 7:50 AM.
with an artival rate of M = 5.2 — 0.0z (with ¢ in
minutes after 7:50 AM. and A in vehicles per minute).
The toll booth opens at 8:00 AM. and serves vehicles
at a rate of u(t) = 3.3 + 2.4¢ {with 1 in minutes after
$:00 AM and u in vehicles per minute). Once the ser-
vice rate reaches 10 veh/min, it stays at that level for
the rest of the day. If gqueuing is D/Df1, when will the
gueue that formed at 7:30 A.M. be cleared?

5.18 Vehicles arrive at a freeway on-ramp meter at a
constant rate of six per minute starting at 6:00 AM.
Service begins at 6:00 AM. such that u(5) = 2 + (.51,
where w(7) is in veh/min and 1 is in minutes after 6:00
AM What is the rotal delay and the maximum gueue
length (in vehicles)?

5.19 Vehicles arrive at a tolthooth zccording to the
function A(f) = 5.2 — 0.20¢, where A{#) is in vehicles
per minute and 7 is in minutes. The toll booth operator
srocesses one vehicle every 20 seconds. Determine to-
ta} delay, maximum queue lengrth, and the time that the
20th vehicle 1o arrive waits from its arrival to its depar-
ture.

$.20 There are 10 vehicles in 2 queue when an atten-
dant opens a wll booth. Vehicles arrive at the booth at
a rate of 4 per minute. The attendant opens the booth
and improves the service rate over dme following the
function w(f) = 1.1 + 0304, where ugf) is in vehicles
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per minute and ¢ is in minutes. When will the queue
clear, what is the total delay, and what is the maximum
queue length?

5.21 Vehicles begin to arrive at a parking lot ar 6:00 AM.
with an arrival rate function ¢in vehicles per minute) of
AH = 1.2 + 0.3t, where 7 is in minutes. AL 6:10 AM.
the parking lot opens and processes vehicles at a rate
of 12 per minute. What is the total delay and the maxi-
mum queue length?

522 At a parking lot, vehicles arrive according to a
Poisson process and are processed (parking fee col-
lected) at a uniform deterministic rate at a single sta-
tion. The mean arrival rate is 4 veh/min and the
processing rate is 5 veh/min. Determine the average
fength of queue, the average time spent in the systemn,
and the average waiting time in the queue.

5.23 Consider the parking lot and conditions de-
scribed in Problem 5.22. If the rate at which vehicles
are processed became exponentially distributed (in-
stead of deterministic) with a mean processing rate of
5 veh/min, what would be the average length of queue,
the average time spent in the system, and the average
waiting time in the quene?

5.24 Vehicles arrive at a toll booth with a mean arrival
rate of 2 veh/min (the time between arrivals is expo-
nentially distributed). The foll booth operator pro-
cesses  vehicles (collects tolls) at a uniform
deterministic rate of one every 20 seconds. What is the
average length of queue, the average time spent in the
system, and the average waiting time in the queue?
525 A business owner decides to pass out free tran-
sistor radios (along with a promotional brochure) at 4
beoth in a parking Jot. The owner begins giving the ra-

dios away at 9:15 AM. and continues until 10:00 AM -

Vehicles start arriving for the radios at 8:45 AM. ata
uniform deterministic rate of 4 per minute and con-
tinue to arrive at this rate until 9:15 AM From 9115 to
10:00 A.M. the arrival rate becomes 8 per minute. The

radios and brochures are distributed at a uniform.;

deterministic rate of 11 cars per minute over the
45-minute time period. Determizne total defay, maxi-
mum queue length, and longest vehicle delay assum-
ing FIFO and LIFO.

5.26 Consider the conditions described in Problem
5.23. Suppose the owner decides to accelerate the ra
die-brochure distribution rate {in veh/min) so that the
queue that forms will be cleared by 9145 AM What
would this new disiribution rate be? '
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527 A ferryboat quewing lane hoids 30 vehicles, If
vehicles are processed (tolls collected) at 2 uniform Pracess to ensure that the queue does not exceed four
deterministic rage of 4 vehicles per minute and pro- vehicies?
cessing begins when the Jane reaches capacity, what s 532 A muck weighing station has 2 single scale. The
the uniform deterministic arrva) rate if the vehicle queue ; ion i
is cleared 30 minuges alfter vehicies begin to arrive?
5.28 Atarol] booth, vehicles arrive and are processed
: _ {tolls collected) at uniform deterministic rates A and y, disiribu
§ respectively. The arrival rate is 2 veh/mip, Processing

: begins 13 minutes after the arrival of the first vehicle,

How many vehicles per minute must the artendant

onto the highway andg inferferes with through traffic
s and the queue dissipates ¢ minuges after the arrival of What is the probability that the humber of trucks in the
;ﬁé the first vehicle Letting the number of vehicles thar systemn will exceed 59
. st acmally wait in 4 queue be x, develop an expres- 533 Consider the convenience store described in Ex-
sion for determining Processing rates in terms of ;

ample 5.12. The owner 18 concerned abont Customers

riving customer not finding an open parking space?

; vell 5.34 Vehicles arrive at a tol} bridge at a rage of 430
frst vehicle will it take for the queue 1o be cleared? velvh (the time between arrivals is exponentially dis-
5.30 Trucks begin to arrive at 2 truck weigh station tibuted). Two toll booths are open and each can pro-
(with a single scale) at 6:00 A M. ar a deterministic byt cess arrivals (collect tolls) at a mean rate of 10 seconds
ume-varying rate of AW =43 - 02 [A(1) is in vehy per vehicle (the Processing time s alsn exponentially
min and ¢ s in minutes). The departure rate is a con. distributed). What is the total time spent in the systern
stant 2 veh/min (time 1o weigh a tiuck is 30 seconds), by ail vehicles in 4 1-hour period?

When will the queue that forms be cleared, what will 5.35 Vehicles leave an airport parking facility (arrive
be the total delay, and what will pe the maximum at parking fee collection boaths) at a rate of 500 veh/h
qicue lengh? (the time between arrivalg is expenentiaily distrib-
ated), The parking facility has 2 policy that the aver-
age time a patron spends in a gueye waiting to pay for
parking is not to exceed 5 seconds, If the time required
o pay for parking is Exponentially distribuged with g

g
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5.31 Vehicles begin tw arrive a1 4 femote parking iot
after the start of 5 major sporting event. They are arriy-
ing at a deterministic hut {imewm}fing rate of A(p) =
33-0.1; (A1) s in veh/min and ¢ is in minutes]. The

parking lot attendang processes vehicies ( assigns mean of 15 seconds, what is the fewest number of pay-
spaces and collects feps J at a deterministic rage at a MERt processing booths that must be open to'keep the
single station. A queue exceeding four vehicles wili average time spent in 4 queue befow 5 seconds?
back up onto a congested sireet, and is o he avoided, '




