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952.01

900.05
612.42
422.84
664.63
1466.74
384.57
1536.80
306.70
442.68
1130.05
591.75
852.37
628.55
133.77
999.92
1356.57
590.11
1803.16
1428.37
991.56
473.06
793.91
851.39
1608.87
1440.93
927.53
1071.48
970.99
109149
884.15
938.48
1263.84
712.74

2 Cost

Readings for Chapter 2

Daganzoe and Newell (1990) describe a model for handling operations, and
examine trade-offs among handling transportation and inventory costs.
Section 2.4 covers much of the same material. Blumenfeld, Hall, and Jor-
dan (1985), and Horowitz and Daganzo (1986) examine minimum cost
shipping strategies, with random demand and travel times, when a fast and
expensive transportation mode can be used to forestall shortages. Part of
Section 2.5 is devoted to this subject.

2.1 Initial Remarks

This chapter describes how to account for the various costs arising from a
logistics operation; it also introduces related terminology and notation. Al-
though this will be done in the context of a single origin producing identi-
cal items' for a single consuming destination, the formulas and concepts
extend to the more general scenarios examined in the latter chapters of this
monograph. Any modifications are described in these chapters. This sec-
tion presents a framework for the classification of logistics cost; specific
cost types will be analyzed in the following sections.

In tracing the path of an item from production to consumption, we see
that it must be:

(i) carmmed (handled) from the production area to a storage area,

(i1} held in this area with other items, where they wait for a transpor-
tation vehicle,

(ii1) loaded into a transportation vehicle,

(iv) transported to the destination, and

(v) unloaded, handied, and held for consumption at the destination.

U in shis monograph we will often call the indivisible units that move over a logistics system, e.g., per-
sons, letters, parcels, ete., "ilems.” When the logistics system handies an infinitely divisible com-
modity, such as fluids and grain, the term "item” may also be used; in that context it will denote a

fisted, and usually small, quantity of the commodity.
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These operations incur costs related to motion (i.e., overcoming distance)
and cost related to "holding” (i.e., overcoming time).

Motion costs are classified as either handiing costs or fransportation
costs. They are very similar; the main difference being the distances trans-
ported and the size of the batches moved together. Handling costs include
packaging (in step (i} above); transportation costs include loading. Of
course, loading is also a handling activity; and if a clear distinction is de-
sired, one could define as a handling cost the portion of loading costs that
arise outside the transportation vehicle, and as a transportation cost, the
portion that arises inside the vehicle. It is not really crucial that the cost of
the specific action be allocated to a "correct” category. What is important
is that in the final analysis all costs are included and none are double
counted.

Holding costs include "rent” costs and "waiting” costs. This is not a
generally accepted terminology, but it is useful for our purposes. As the
name implies, rent costs include the rent for the space, machinery needed
1o store the items in place, plus any maintenance costs (such as security,
utilities, etc.) directly related to the provision of storage space. Waiting
Costs are meant to capture the cost of delay to the items, including: the op-
portunity cost of the capital tied up in storage, any value lost while wait-
ing, etc. For a given set of fixed facilities (machinery and space), thus, the
rent costs remain fixed, but the waiting costs depend on how the items are
processed; i.e., the rent — unlike the total waiting cost per unit time — does
not depend on the amount stored. We will examine these four cost catego-
ries one by one, and see how they can be quantified. Our goal is to identify
which parameters influence the various costs, and the mathematical form
of the relationships.

In analyzing these relationships, it is also important to choose how to
present them. For example, one could measure transportation cost as: cost
per item transported, cost per year, cost per trip, etc. But not all of these
representations are valid for analysis. The cost per item can be converted
to cost per year if we multiply it by the number of items produced in a
year. The cost per item can be converted to cost per trip if we multiply it
by the number of items in the transportation vehicle. Two representations
are equivalent if the conversion factor is a constant that does not depend
on the decision variables. For example, if we seek the optimal vehicle dis-
patching frequency that will maximize the yearly profit for a given produc-
tion level, the desired solution can be found by minimizing the total cost
per year — when price and production levels are constant, yearly profit can
be related to yearly costs by a known non-increasing function. The same
solution could also be obtained by minimizing the average cost per item
because the conversion factor, items produced per year, is a constant. The
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cost per trip, however, would lead to an erroneous solution. In the remain-
der of this monograph we will assume that the yearly demand for items
does not depend on the decision variables, and, therefore, it will be possi-
ble to express cost either as a total per unit time or a prorated average per
item.

In our discussion we will usually include ali the costs incurred by the
items from origin to destination regardless of who pays them (the shipper,
the carrier, or somebody else). If ownership of the item changes at some
point during transportation (e.g., on arrival at the destination), waiting
costs at the origin will be paid by the producer, and inventory costs at the
destination by the consumer. While one may feel that costs borne by any
entity other than our "client” (i.e., the organization whose operation we are
trying to optimize) should be ignored, this is shortsighted. Such an optimi-
zation would tend to transfer the burden of the operation to entities other
than our client (since their costs are not being considered); and as a result,
they may be less willing to participate in the operation. If, for example, a
producer ships infrequently (which minimizes its own transportation costs)
and, as a result, causes large inventories at the destination, the consumer
will be less willing to pay the price ~ and may expect a discount. Such a
discount would obviously have to be included in the optimization of the
shipping frequency, but it is difficult to quantify. Our expressions auto-
matically include the quantity that the discount would represent — the in-
creased cost to the consumer. Of course, if this is not desired, appropriate
terms can be deleted from the expressions; the techniques remain the same.

Let us now turn our attention to the various cost components. Section
2.2 discuses holding costs, Sec. 2.3 transportation costs and Sec. 2.4 han-
dling costs. Section 2.5 explains how uncertainty and random phenomena
influence cost accounting.

2.2 Holding Costs

A sufficiently detailed quantitative description of holding costs can be
given in the context of a simple scenario with one origin and one destina-
tion. Consider the situation depicted in Fig. 2.1, where items are produced
and demanded at a constant rate, D' . The four curves of the figure repre-
sent the cumulative number of items to have been: (i) produced, (ii}
shipped, (iii) received at the destination, and (iv) consumed. We assume
that the ordinates of the curves at time zero (when observation began) have
been chosen so as to ensure that the vertical separation between any two
curves at that time equals the number of items initially observed between
the corresponding stations.
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Rarely used in the inventory and queueing literature, cumulative count
curves such as those depicted in Fig. 2.1 are particularly useful to trace
items through consecutive stages. In our case, they conveniently describe
in one picture how the number of items in various, logistic states {waiting
for transportation, being transported, and waiting for consumption) change
with time. Notice that the number of items waiting for transportation at any
given fime is the vertical separation between curves (i) and (ii) at the corre-
sponding point on the time axis, the number being transported 1s the verti-
cal separation between curves (ii) and (iii), and the number waiting for
consumption is the vertical separation between curves (iti) and (iv).

A { i) Production

(iti) Arrivals
{it)
Shipments

{iv)
Consumption

CUMULATIVE NUMBER OF ITEMS

-
TIME

Fig. 2.1 Cumulative item counts at different stages in the logistics operation

Chapter 1 in Newell (1982) shows in detail how various other measures of
performance can also be gleaned from these graphs. Of special interest
here are horizontal separations between the curves and the intervening ar-
eas. When items pass through the system in a "first-in-first-out" order, then
the n™ ftem to be counted at each observation station (i, i, iii, or iv) is the
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same item: as a result, the horizontal separation between any two curves at
ordinate "n" represents the amount of time spent by that item between the
corresponding stations. In the figure, thus, t,, represents the transportation
fime. I should be intuitive that areas between curves represent total
amount of wait (in "“item-hours") regardless of the order in which items are
processed. Thus, the shaded area in the figure represents the number of
*item-hours" spent at the origin, and the dotted area represents the number
at the destination. It follows that the average horizontal separation between
two curves, measured between two points where the curves touch, repre-
sents the average time that a typical item spends between the operations
represented by the curves. (The average horizontal separation between the
curves can be expressed as the ratio of the area, i.e., the total wait, and the
vertical separation between the two points, Le., the number of items proc-
essed. Such a ratio is, by definition, the average wait per item.}

In our example, the (constant) separation between the production and
consumption curves represents the average "waiting” that an ttem has to do
between production and consumption. This is equal to t, plus the maxi-
mum interval (or headway) between successive dispatches, Hy = max {H;}
(see figure):

wait =H +1,. (2.1a)

The room needed for storage at any given location should be proportional
to the maximum number of items present at the location. This is repre-
sented in Fig. 2.1 by the maximum vertical separations between curves.
Because the figure assumes that each vehicle carries all the items that have
been produced, the storage area required at the origin is proportional to the
maximum headway (otherwise the maximum inventory accumulation
would be larger); i.e.

maximum accumulation =D H | (2.1b)

The maximum accumulation at the destination is the same as it is ai the
origin (the reader can verify this from the geometry of the figure, remem-
bering that H; = max{Hi}) .

The expressions for average wait and maximum accumulation can be
translated into costs per ifem or per unit fime using cost conversion factors.
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2.2.1 Rent Cost

This is the cost of the space and facilities needed to hold the maximum ac-
cumulation; for properly designed systems it should be proportional to the
maximum accumulation, The proportionality factor will depend on the size
of the items, their storage requirements, and the prevailing rents for space.
If the facilities are owned (and not leased), then the purchase cost should
increase roughly linearly with size. Thus, one can compute an equivalent
rent (based on the amortized investment cost over the life of the facilities)
which should still be roughly proportional to the maximum accumulation,
Let ¢, be the proportionality constant (in $ per item-year); then

rent cost/vear = c, (maxiumum accumulation) (2.2a)
and if the demand is constant, Eq. (2.1b) allows us to write:
rent cost/item = ¢, (max accumulation)/D '=c H, (2.2b)

Note that the rent cost per item is independent of flow (the production and

consumption rate D') and proportional to the maximum time between dis-
patches.

2.2.2 Waiting Cost

Waiting cost, also called inventory cost, is the cost associated with delay to
the items. As is commonly done in the inventory literature, it will be cap-
tured by the product of the total wait done by all items and a constant, ¢; ,

representing the penalty paid for holding one item for one time unit {(usu-~
ally a year). Thus,

waiting cost/year = c, (tora! wait per year)
and

waiting cost/item = c, (avemge wait/item )

Because the above expressions implicitly value all the item-hours equally,
caution must be exercised when the penalty depends on: (i} the time of
day, week, or vear when the wait occurs, and (ii) how long a specific item
has already waited. For the example in Fig. 2.1, the waiting cost is:

The |
term
syste
CUrve
termis
hold:

Fo
(e.z.
oty
value
H, ali

It
Whert
the ¢
"valu
cost i
shoul
The ¢
value
pinpo
selves

Sy
tars {
calcul
fixed,
rarily
If the
avoid
the of
iyf,'kﬁg

If «
duced
the pr



imum ac-
nal to the
1 the size
for space.
sst should
squivalent
facilities)
julation.

(2.22)

(2.2b)

iction and
ween dis-

h delay to
ill be cap-
nstant, ¢; ,
unit {usu-

rs equally,
ae time of
acific item
is:

Holding Costs 21

waiting costiyear =c, [D'(H, +1, ]
=(c,D'H, )+ (D1, : (2.32)

waiting cost/item = c, (H; + 1, )
= (Cin )4" (C!tm)

The left side of Equation (2.3a) assumes that the time unit is one year, The
term in brackets represents the average accumulation of inventory in the
system {the vertical separation between the production and consumption
curves of Fig. 2.1). As we shall see, 1t is usually convenient to group the
terms associated with H, in Eqgs. (2.2b} and (2.3b), by defining a stationary
holding cost per item-day ¢, = ¢, + ¢

For problems in which the inventory at the destination can be ignored
(e.g. for the transportation of people in many cases) the average wait added
to t, should be computed for the shaded area in Fig. 2.1. The result, a
value somewhere in between Y2 ¢;H and "2¢;H, , is no longer a function of
H; alone.

(2.3b)

If we were shipping people, ¢; would represent the "value of time". A

When shipping freight, this constant would include the opportunity cost of
the capital tied up in holding an item for one time unit. (If = denotes the
"value” of an item, and i an agreed upon discount rate, then the opportunity
cost is mi ). For perishable items, and items exposed to loss and damage, ¢
should also include any value losses arising from time spent in the system.
The constant, ¢; is hard to determine precisely. We don't know people's
value of time accurately and, as is well known in economics, it is hard to
pinpoint "i". Furthermore, in most cases even the value of the items them-
selves is hard to measure.

Suppose that an item costs m, dollars to produce but it is sold for n, dol-
lars (m) >> ). Which of these two values should be used for inventory
calculations? The answer depends on market conditions. If the demand is
fixed, a reduction in inventory allows the production to be slowed {tempo-
rarily only) until the new lower inventory levels are reached (see Fig. 2.2).
If the wait is reduced by A units, the production of DA items can be
avoided. The resulting one-time savings can be amortized over the life of
thg operation to yield a cost savings per unit time which is proportional to
DArn, . This is the same as saying that ¢; is proportional to m; .

If on the other hand the market could absorb everything that is pro-
duced, one could then sell the extra D'A items in inventory while keeping
the production rate constant and the amortized extra revenue per unit time

R S e
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1o my.

In practice, one often finds that even my and n, are not known; this often
happens when the items are components consumed within the firm as part

of a multi-plant production process. Accounting systems are typical

rigged to track the overall costs of production according to broad catego-
ries (¢.g., labor, depreciation, etc.) but the costs are not prorated to the dif-

ferent components that are produced.
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Fig.2.2 Inventory effect of a temporary reduction in the production rate

In other cases the product can he acquired at different prices from different
producers, so #; is not fixed. Then, the relevant price used for decision-
making is not necessarily the average, For example, if a producer can se-
cure limited supplies of items both for a low price (M, = 1) and unlimited
supply at a higher price (1, = 7> ), it will try to meet as much of its de-
mand with the cheap items. If the demand rate comfortably exceeds the
capacity of the cheap supplier, firther increases in the rate would be satis-
tied at cost ' Thus, this high value and not an average would be the rele-
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vant cost for an analysis of possible market expansions. Clearly, careful
consideration is often necessary in determining something as seemingly
hasic as the “cost of goods sold”.

Finally, the value of ¢; that one would use in expressions such as Egs.
(2.3) should also reflect any indirect costs of delay to other aspects of the
overall operation such as the effect of inventories on quality. These effects
may be hard to quantify, but must be considered. Conventional wisdom in-
dicates that large inventories lower quality because their existence reduces
the incentive to eliminate defects ar the origin — after all, items found to be
defective can be replaced from the existing stock. Without this incentive,
the quality of all the ftems (even those that are not defective) may suffer.

The value of ¢, can change by many orders of magnitude, depending on
what is being transported. For people ¢; should be on the order of $10 per
hour so that a bus load of 30 people would cost between 10% and 10’ dol-
fars per hour. A truck carrying 20,000 Ibs of goods costing on the order of
$1 per pound (which would be typical of groceries, machinery, etc.} would
contain cargo valued at $20,000. Amortized at 10 percent for a (2,000
hour) vyear, the cargo costs on the order of 10" per hour. Cheaper and
lighter cargoes can result in even lower costs. These "back-of-the-enve-
lope" calculations illustrate that while it may be difficult to define ¢; very
precisely in any specific application, it should be possible to estimate its
order of magnitude. Fortunately, rough estimates often are all that is
needed. As we shall see, the structure of a logistic system depends on the
order of magnitude of ¢; , but it is not very sensitive to small changes in ¢;.

Before turning our attention to motion costs, let us introduce some tet-
minology to identify the two terms, {¢:H;) and (ct,), of Eq. (2.3b). The
first term, which depends on the maximum dispatching headway and arises
when the items are stationary, will be called the "stationary inventory
cost.” The other component (cit,,}, which arises while the items are moving
and is independent of the dispatching headways, will be termed "pipeline
inventory cost.”

The following two sections discuss motion costs. Transportation costs
are addressed first.

2.3 Transportation Costs

We continue with the one-origin/one-destination situation that was de-
picted in Fig. 2.1. If one uses a public carrier to transport the items from
the origin to the destination, the total cost per year will be the sum of the
costs of each individual shipment. Published rates increase roughly line-
arly with shipment size. (The rates increase in steps, but the overall slope
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is approximately constant for wide ranges of shipment sizes.) The mathe-
matical relationship is:

shipment cost = ¢, tew (2.4a)

where v is the shipment size, c: is a fixed cost per shipment that should in-
clude things such as driver wages, and c, is the rate at which the variable
cost per shipment increases size, e.g. due to increased fuel consumption.
The cost for shipping a sequence {v;} of n shipments (i = 1, ... .n) totaling
Vitems (V = Z; v;) is thus:

cost for n shipments = Z c; e, =cntel. (2.4b)

i=l

The total cost only depends on the number of shipments, regardless of
what they contain and when they happen, and the total number of items

shipped. The cost per item, thus, decreases with the average shipment size,
v

: . A I
transportation cost/item = ¢ , (?) e, =c, (WJ +e,. (2.52)
) v

These economies of scale arise because all the items in a shipment share
the fixed cost, cp.

For our simple problem with one origin and one destination, the only
decision variable appearing in Eq. (2.5a) is n (or v ); thus, the variable cost
should not influence shipping decisions. We will not eliminate it from our
expression, though, because ¢, is not a constant for more complicated
problems. (As we shall see, ¢, depends on distance; and for problems with
many origins and destinations, the distance traveled is not fixed.)

2.3.1 Relationship to Headways

Like inventory and holding costs, the cost of transportation depends on the
dispatching headways. The relationship is:

Transportation costiitem = ¢ F /(D’E):F c, {2.5b)

because V = Z, D'H; = D'Hn ; ie, v = D'H . The transportation cost de-
creases with the average headway, unlike holding costs which increased
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with the maximum headway Notice as well that for a given number of
shipments, and thus a given average headway, the transportation cost is in-
dependent of the specific headways. Hence, shipments should be spread as
regularly as practicable to reduce the maximum headway and the associ-
ated holding cost. If headways can be maintained constant, H; = H, then
both holding and transportation costs are functions of H.

2.3.2 Relationship to Distance

As an aside that will become important for multiple origin and/or multiple
destination logistic problems, we examine the relationship between trans-
portation cost and distance.

Rate books reveal that ¢; and ¢, depend mainly on distance; the precise
location or origins and destinations also influences these costs but to a
lesser extent. The relationships are well approximated by linearly increas-
ing functions of distance, d:

- N '
¢, =c, +e,d and ¢ =c' +c',d

!
The interpretation of these four new constanis appearing in the right side
of these expressions is easier when the above expressions are substituted
for ¢;and ¢, in Eq. (2.4b). The cost for n shipments totaling V items, when
the origin and destination are d distance units apart, can be broken up in
four terms as follows:

cost forn
[sthn{ems)wsﬁ‘:d”d + Vo, Vd (2.5¢)
The first constant, ¢, , is the cost attributable to each trip, regardless of dis-
tance and shipment composition; it includes the cost of stopping the vehi-
cle and having it sit idle whlle it is being loaded and unloaded. Think of it
ds the fixed cost of sfopping "c", independent of what is being Joaded and
unloaded. The second constant, ¢, , is the cost attributable to each incre-
mental vehicle-mile. It is the vehicle cost (mcludmg the driver) for each
mile traveled regardless of the Vehlcle s contents; e, the cost of distance,
“cd-“

" The third constant, ¢’ , represents the added cost of carrying an exira
item. It represents a penalty for delaying the vehicle while loading and
unloading the item, as well as the cost of handling the item within the ve-
hicle. (Handling costs outside the vehicle will be considered in Section
24).
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The fourth constant is the cost attributable to each incremental item-mile.
It can be viewed as the marginal wear and tear and operating cost per mile
for each extra item carried. This constant, and the fourth term as a whole,
should be small compared with the second term (since the cost of a vehi-
cle-mile is relatively independent of a vehicle's contents); it will normally
be ignored.

If, instead of a single destination, the vehicle carried the items picked up
at the origin to several destinations, making in the process n, delivery
stops, Eq. (2.5¢) would likely have to be modified slightly. Logically, rates
must reflect the additional delay-cost for the extra stops. However, because
not much else changes (the vehicle travels the same distance and carries
the same number of items), one would expect only the first term of Eq.
(2.5¢) to change. Although not verified experimentally, it seems reason-
able to expect it will increase proportionately to the number of stops (1 +
n:) . Accordingly, if we redefine ¢, to be the fixed cost per stop, then the
cost of making n shipments is

cost for n \~ L o _
[sthmenrsj~c“(l ‘ n“')n+€d nd+c ¥, (2.5d)

where the fourth term of Eq. (2.5¢) has been neglected.

Whether Eq. (2.5d) matches actual rates when n; > | is an open ques-
tion. Multiple stops, however, are normally made as part of exclusive ser-
vice agreements between shippers and carriers, which should reflect the
carrier's actual operating costs; in that case, Eq. (2.5d) seems justified.
That carrier cost (or the shipper cost if it uses its own vehicle fleet) is well
approximated by Eq. (2.5d) should be intuitive. Drivers' wages should be
proportional to the total vehicle-time for all the trips. Because vehicle de-
preciation cost {overhead) is proportional to fleet size, i.e., the number of
vehicle-years needed per vear if the demand for vehicles is not seasonal,
overhead can be prorated to the tasks of a year on a total vehicle-time ba-
sis. Thus, the sum of overhead and driver wages is proportional to the total
vehicle-time for the n shipments, Other vehicle operating costs should be
proportional to the total number of moving vehicle-hours. Because both the
total time and the time in motion are linear functions of the vehicle-miles
traveled nd , the number of stops n(l + n,), and the total amount of freight
hauled V. the total cost should be roughly linear in these variables; i.e.,
Fq. {2.3d) is a good approximation for the carrier cost,
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On dividing Eg. (2.5d) by V , the average cost per jitem is obtained:

1+n d

costiitem = ¢, —=— T C =T
v ¥
As a function of the average headway, the costs per item and per unit ime

are:

cost/item = ¢ {E+FT"\1+C /_d \+C' (2.5¢)
ostlitem x| ~——= | — . e
\D'H ) “LD'HJ ¢
4+ AN
cast/rimezcs(l s J%*cd (z—d_—"}i—(:'s D' (2.5
\H H

Although Egs. (2.5¢ and 2.5f) do not show a dependence on the individual
headways, we should recognize that irregular schedules may require slight-
ly larger cost coefficients if the shipper exclusively uses its own private
fleet.

This happens because the fleet size needed is dictated by the operation
of the system during time periods with the largest rambers of dispatches,
with the result that fleet size costs are more closely related to the minimum
headway than to the average. An extensive discussion of this issue for a
problem with variable demand can be found in Hurdle (1973a) and
(1973b); see also Du (1993). Fleet size considerations, thus, provide a sec-
ond incentive to keep transportation schedules as regular as possible.

Finally, note that the in-vehicle time of a typical item, t,, is also a linear
funciion of distance, d, and number of stops, f. This observation will be~
come important later when vehicle routing is a decision variable.

2.3.3 Relationship to Size; Capacity Restrictions

Let us now return to the single origin and single destination situation of
Fig. 2.1. So far, we have ignored the possibility of sending very large
shipments; shipments that would not fit in the largest vehicles on the road.
If one were to plot the cost per shipment versus shipment size for a range
extending beyond this Maximum, Vi » for a firm that owns its own vehi-
cles, one would likely find a graph as the one shown in Fig. 2.3. Whenever
the shipment size reaches and exceeds a multiple of Vi & NEW vehicle
needs to be dispatched with a resulting jump in cost. The steps of Fig. 2.3
should be rather flat (With ¢ Ve << Cp) SiNCE the cost of operating a vehi-
cle is rather insensitive to what it contains. Whether or not it is exactly as

shown in Fig. 2.3, the transportation cost per shipment function, £(v),
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should be "subadditive;" i.e., it must satisfy: fi(x, + x;) < fi(x;) + fi(x,) for
any X; , x> > 0 . This property is to be expected because one should not be

able to reduce the cost of a shipment by shipping it in parts (see Problem
2.3).
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For most problems, though, one only needs to consider the linear part of £
between 0 and Vi . as shipments larger than Ve, are not economical. This
can be easily seen if handling costs can be ignored (e.g., if the handling
cost per item is a constant, independent of shipment size) by examining the
sum of the average holding and motion costs per item as a function of
shipment size. Figure 2.4 plots the average transportation cost per item as
would be obtained from Fig. 2.3. The figure also plots the negative of the
holding costs as a function of shipment size. (We are assuming here that
headways are regular, H = H, = H ; and we are using Eqgs. (2.2b) and
(2.3b) with H, = H = v/D". Recall that ¢, is the stationary holding cost per
item-day, ¢, = ¢; + C:)

The optimal shipment size is the value of v for which the vertical sepa-
ration between the two curves of Fig. 2.4 is minimum. Clearly, the point
can be identified by sliding the "waiting" curve upwards until it first
touches the transportation curve. This can only happen either at point P of
the figure (where v = vy, ), OF else at a point v < Vi, , if the line is suffi-
ciently steep. For most problems, thus, one can ignore the behavior of the
transportation curve for v > vy , if one remembers to abide by the con-
straint: v < Vi

Analytically, the optimal shipment size of Fig. 2.4 is the solution of the
following problem:

(EOQ): min JL Av+£} shvEV
v

where

A=c,/D' and B=c, .

This is the well known "lot size" or "economic order quantity (EOQ)"
model of the inventory control literature (Welch, 1956; Arrow et al., 1958)
whose toots can be traced to the pioneering work of F.W. Harris in the
early part of this century (Harris, 19132 and 1913b). Erlenkotter {1990} de-
scribes these works in a historical context.
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2.3.4 Relationship to Size: Multiple Transportation Modes

We have already seen that shipment cost increases approximately linearly
with size (Eq. 2.4), and that this is likely to be true for fairly broad ranges
of shipment sizes. This qualification was made because if shipment size
varies by a large amount, it may be cost effective to change transportation
modes.

While some shipping modes, such as mail, exhibit a low fixed cost per
shipment and a high cost per item, others may be the opposite. Fig. 2.5
shows three such curves. Note that the best mode depends on the shipment
size; as it grows, one tends to favor the modes with lower variable cost and
higher fixed cost. (In comparing modes, the vehicle cost should include the
fixed pipeline inventory cost per item, Citm} faster modes may be preferred
for valuable items.)

Fig. 2.5 displays the transportation cost that results if one ships every-
thing by the cheapest mode — the lower envelope of the three cost curves.
D If, as shown, cost increases at a decreasing rate for each mode, then the
— ey lower envelope also increases at a decreasing rate. Like the cost curves for
: the specific modes, the shipment cost by the best mode is then increasing
and concave, and therefore subadditive; this shows that cost cannot be re-
duced further by breaking the shipment into parts. The lower envelope is
optimal.

If the individual modal component curves are merely subadditive, e.g.,
they exhibit jumps as in Fig. 2.3, then the lower envelope is not necessarily
optimal, or subadditive. In this case, costs can sometimes be reduced by
breaking a shipment into parts and sending it by different modes. For ex-
ample, if the cost parameters of two modes with v = 1 were (cr=1,¢,=
0) and (¢t = 0, ¢, = 1.5), then the single-mode shipment cost for v = 1.1
would be either 2 or 1.65; i.e., 1.65 by the best mode. But this is not opti-
mal. The optimum is achieved by sending a one-unit shipment with the
first mode (cost = 1) and the remainder with the second mode (cost =
0.165). If shipments can be allocated to the modes in an optimal way and
the modal cost curves are subadditive and increasing, then the overall cost
curve can itself be shown to be subadditive and increasing (see problem
2.4). - : . . S

If the shipper operates its own vehicle fleet, the curves of Fig. 2.5 could
represent different vehicle types, and the figure would then indicate the
most economical vehicle type for the particular shipment size. Because
such a choice is not as flexible as a choice of public carriers (i.e. modes),
shippers do not change the vehicle fleet often. When the choice of vehicle
type is not an issue, then the appropriate (linear) component curve should
be used to evaluate transportation cost.

sment size
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Fig. 2.5 Relationship between shipment cost and size for various transporta-
tion modes

2.4 Handling Costs

Handling costs include loading individual items onto a "container”, mov-
ing the container to the transportation vehicle threshold, and reversing
these operations at the destination. The container can be a box or a pallet,
or if the items are large enough, nothing at all. We examine here the cost
of handling a shipment of size, v .

If the items are handled individually, the handling cost per shipment
should be proportional to v, so that

handling cost = ¢ v,
g .

if the items are small, it is not economical to move them individually; in
stead they can be moved on "handling vehicles” such as paliets. Clearly,
the handling cost should have a similar torm as the transportation function,
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since items are being transported within a compound. If the batch is
smaller than one pallet the cost of handling it should therefore be:

handling cost/batch=c' ,+ ¢, v. (2.6

The constant ¢'; represents the (fixed) cost of moving the pallet regardless

lode 3" o of what it contains, including the forklift driver's wages, pius the forklift's

Lo depreciation and operating cost. The constant ¢’, captures the cost, ac-

' counting for both labor and capital, of loading one item on the pailet. If v

is larger than the maximum number of items that fit on a paliet, v’ . then

the handling cost function per shipment, fi(v} will still be a scaled down
version of the transportation function, as in Fig. 2.6,

At the destination, the handling cost function will be analogous, possi-
bly with different ¢’ and ¢,’ but the same v’y As a result, the combined
handling cost for the shipment at both ends of the trip should still have the
form of Fig. 2.6, and should obey Eq. (2.6) if v < v'pa

One could compare the cost of moving items individually and moving
them in pallets. But if more than one item fits on a pallet, it will usually be
cheaper to move them in pallets.

sus transporta-

tainer”, mov-
and reversing
2 or a paller,
here the cost

per shipment

2 Although we have used the words pallet and forklift repeatedly, we stress here that Eq. (2.0} also ap-
plies to other container-filling methodologies that do not use forklifts; e.g.. 1 the "bucket-brigade”
method of order-picking using passive conveyors described in Bastholdi and Elsenstein (1996). In

these cases, one just needs to make sure that the constants ¢’ and ¢, are represeniative of the actual

operation.
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24.1 Motion cost

Figure 2.7 depicts the sum of transportation plus handling costs for v/,
<< Viney - The function, £, = f, + £, , is still subadditive and increasing. (See
problem 2.4.)

MOTION COST PER SHIPMENT
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Note that to within an error of ¢/¢, the motion cost per shipment, f,(v),
can be approximated by line PO of the figure, which is a lower bound:
i for v/ ¢’y
. max vime, +l e, '+ v. 2.7
sing. (See ffn( ) ! ’ ‘ V max =0

This indicates that handling costs can be subsumed in the transportation
cost function, Eq. (2.4a), with a sustable definition for the fixed and vari-
able cost: 3

Hveviitisbettertouser e+ crand ¢, =g, + ¢,
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The expression for the variable motion cost per item, ", , is intuitive; in
addition to the variable transportation and handling costs per item, ¢, and

¢'s, it includes each item's prorated share of the fixed cost per pallet,
C[f -’fvlmax .

2.4.2 The Lot Size Trade-Off with Handling Costs

[f we prorate the cost of a shipment to the items that it contains, we can
construct a figure, analogous to Fig. 2.4, which can be used to determine
the optimal size of the shipments. Figure 2.8 is not extended beyond v, ,
since larger shipments continue to be undesirable. Note from the figure
that if the waiting cost curve is pushed upwards, the first point of contact is
either v < v’ (if the waiting cost curve is very steep), or else it is likely
to be an integer multiple of v’ . (This is not always the case, but very lit-
tle is lost by assuming that it is — Daganzo and Newell, 1987). Because the
lower bound from Eq. 2.7 is exact when v is an integer multiple of v/ . ,
one could use it instead of the exact (scalloped) curve while restricting v to
be a multiple of v',.. . Except for the variable cost coefficient, ¢", , this
equation matches Eq. (2.4a) , and we saw already that variable costs do not
influence the optimal shipment size. Thus, if shipment size is restricted to
be an integer multiple of v’ . , the optimal shipment size is independent of
handling costs.

We now examine the consequences of relaxing this restriction. If the op-
timal shipment size, v* | is greater than one pallet, we see from Fig. 2.8
that allowing v to differ from a multiple of a palfet cannot improve things
appreciably. In the most favorable case the cost savings can be shown to
be about one tenth of ¢yv',,.. , with much smaller savings m other cases;
see problem 2.5. Thus, even without the restriction, one can safely ignore
handling costs in determining shipment size.

If, on the other hand, v* is smaller than one pallet, then handling costs
should be considered; there may be a significant difference between f,(v)
and its lower bound (see Fig. 2.8 and the previous footnote). If ¢’y > ¢y,
then the optimat shipment size may be noticeably larger than if handling :
costs had been ignored.
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In summary, the foliowing simple recipe can be used: If economic ship-
ment sizes are likely to be larger than a pallet, ignore handling costs in the
decision; but if shipment sizes are smaller than a pallet, then include the
fixed cost of handling a pallet as part of the fixed cost per shipment and se-
lect the shipment size which is the minimum of problem "EOQQ" with A =
&/D'and B =¢™;.

" “More complicated motion curves would arise if items had to be put into
boxes, which could be put onto pallets, which would then travel on trucks.
Because the relationship of boxes to pallets is analogous to the relationship

P 0
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between pallets and trucks, the additional handling step would be reflected
by a second set of scallops on Fig. 2.8. The selection of an optimal ship-
ment size would be atfected by this second set of scales in a similar way:
the cost of moving and filling boxes can be ignored if ihe optimal shipment
size is larger than a box; otherwise, the fixed cost per shipment, ¢"; |
should include the fixed cost of moving one box including opening and
closing it, but not the cost of filling it.

With a properly defined ¢";, the optimal shipment size should still fol-
iow from the solution of the "EOQ" problem:

T max

[
(EOQ)min{ Av+§—+C} JVEY (2.8a)
L v

A=c¢,/D", B=c", ,and C=ct,+c", . (2.8b)

Note that ¢", should include any handling costs (per item) not included
in ¢";, and that the minimum of Eq. (2.8a) is unaffected by ¢", since C is an
additive constant in Eq. (2.8a). Also remember that if the minimum of
(2.8a) is greater than one box (or pallet) the shipment size should then be
rounded to the nearest box {or pallet); the cost, however, remains close to
the minimum of (2.8a) without rounding.

2.5 Stochastic Effects

We have assumed in our discussion of cost that the transportation travel
time and the production and consumption rates are constant. These as-
sumptions can be violated in two ways. The production and demand rates
(and the travel time perhaps as well) may vary over time in a predictable
manner, and also unpredictably. Predictable variations such as seasonal
trends and day of the week effects will be examined in Chapter 3; optimal
decisions can be found because costs can be predicted.

Unpredictable variations are another matter and are examined here; they
require additional inventories, and may also increase transportation cost.
Continuing with the single origin and single destination model, for the rest
of this section we assume that production is driven by consumption. That
is, the destination requests deliveries so that its inventory level can sustain
at all times the demand that is anticipated. With inherently unpredictable
demand and travel times, however, it is no longer possible to time the
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shipments so they arrive just as the stock at the destination is running out.
as with the first two shipments of Figure 2.1. Stochastic variations are the
subject of much attention in the inventory control literature, where the ab-
jective is to determine optional levels of "safety stock"” and reorder "trigger
points” (see Peterson and Silver (1979) or Zipkin (2000) for example).
These stochastic phenomena complicate matters, but in many cases the
added holding plus motion costs (per item) that arise due to randomness
can be shown to be known linear functions of either v or 1/v, and in other
cases completely independent of v . This is fortunate because the added
costs can then be captured by a deterministic EOQ model, Eq. (2.8a),
where some of the constants ("A", "B", and "C") bave been increased.

2.5.1 Stochastic Effects Using Public Carriers

Newell, in some unpublished notes, has pointed out that if transportation is
reliable enough to ensure that shipments arrive at the destination in the or-
der in which they were requested, then the added cost due to randomness is
constant. As a result, the demand and travel time uncertainty should influ-
ence neither the frequency of dispatching nor the average lot size.

A common ordering strategy uses a trigger point v, as follows: when-
ever the inventory on hand plus the number of items on back order equals
vg , a shipment of size v is requested.’ The reorder headways for this strat-

egy vary because the demand varies, but the shipment sizes remain con-
stant,

Let us assume that the demand arrival process can be approximated by a
diffusion process with rate D' (items per unit time) and index of dispersion
v (items).’ The index of dispersion represents the variance to mean ratio of
the number of items to have arrived in one time unit. (Note that if items are
measured by a physical quantity such as tons, cubic feet, etc., y shares
these units.) A suitable choice of ¥ approximates most of the processes ex-
amined in the inventory literature. Let us also assume that the lead time, T,
(the time between order placement and receiving) has mean t, and standard
deviation 6,. (The lead time should be close to the average transportation
fime, t,, , if the origin can keep up with the requests; but this assumption is
not needed here.) '

4 These strategies are called "(s.8) in the inventory literature; see e.g. Peterson and Silver {1979}
Zipkin (2000).

5 For a diffusion process, the number of arrivals in any time interval s a normal random variable, with
mean and variance proportional to the duration of the imerval, and independent of the arrivals in

non-overlapping intervals. Newell (1982} proposes to approximate queuing and inventory phenom-

ena with diffusion processes.
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If one desires to avoid stock-outs, the trigger point, vg , should be large
enough to ensure that no stock-out occurs immediately before the arrival of
an order. The best way of exercising this policy can be found with the help
of the three curves in Fig. 2.9, relating time to the cumulative number of
items that have been: (1) ordered, (ii) received, and (iii) consumed at the
destination. The dashed lines in the figure represent the portion of the
curves that is not yet known at time "NOW". A request for a shipment is
depicted immediately after time "NOW" since at that time the sum of the
inventory on hand and the back orders is shown to be v, . Because all the
back orders are sure to have arrived before the new order, it is clear from
the figure that a stock-out will be averted immediately before the new or-
der arrives il the future consumption until the new order arrives (segment

_f:’é in Fig. 2.9) does not exceed the inventory currently on hand plus the
back orders, v, .

‘this condition can be expressed probabilistically if we recognize that,
conditional on the lead time, T, , PQ is normal with mean D'T, and vari-

ance D'y'Ty . The unconditional first two moments of PQ are thus:

E(Po)= D,

var(PQ): Dol + D'y,

If the trigger point, vy, is chosen several standard deviations greater
than D't stock-outs will be rare. The precise value of v; is not important
for our analysis (it is a function of D', v, t,, o, , and nothing else): what is
important is that, as the figure clearly indicartes, the contribution of v to-
ward the maximum and average accumulation is insensitive to v, . This
would, in fact, be the case even if v, were chosen in a more involved marn-
ner (e.g. recognizing the distribution of T,). Existing methods for selecting
trigger points and shipment sizes (Peterson and Silver, 1977, Zipkin, 2000)
exploit this insensitivity,

In order to choose the optimal v , the motion and inventory costs must
be balanced, as shown in prior sections. In the long run, the motion costs
with and without stochastic effects are the same because the same number
of shipments are sent in both cases (D’/v shipments per unit time), but the
holding costs are larger with stochastic phenomena. The maximum number
of items present at the destination will certainly occur after the arrival of
an order. As shown in the figure, for a tvpical order, this number is:
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which is largest when };é is as small as possible. The term (v, - FQ—)

represents the contribution of randomness toward higher inveniories; but
the term is not dependent on our decision variable, v . Thus, except for an
additive constant, the holding costs are as in the deterministic case; the op-
timal shipment size remains the same,
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Fig. 2.9  Evolution over time of the cumulative number of items ordered, re-

ceived and consumed for a simple trigger point strategy

For clarity, the inventory at the origin was ignored in the foregoing discus-
sion. Yet, the irregular way in which orders are placed will undoubtedly
raise inventory and production costs at the origin. These effects, however,
are shown below to be largely independent of v (their actual magnitude
depends on how frequently the production is adjusted) and, thus, should
not influence shipping decisions.

If, as is usual, there is an incentive to maintain a steady production rate,
then one would set it at a value D', , slightly greater than D' to ensure that
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the overall demand can be met in the fong run. Although inventories at the
origin would then tend to grow with time, every once in a while (every
many reorders, presumably) the production process could be interrupted
for a while to allow the demand to catch up with the cumulative number of
items produced. The frequency of these stoppages would depend on pro-
duction and inventory cost considerations.

A simple strategy wouid stop production whenever the inventory at the
origin (after a shipment) reaches a critical value, v, , and would resume it
(also after a shipment) when the inventory dips below another value, va;
se¢ Fig. 2.10. The maximum inventory is therefore: v, + v , and the aver-
age inventory: 1/2(v, + v, + v). The cost of production should be a func-
tion only of I, and the duration of the on and off periods. The on and off
periods, however, only depend on v, , v, and on the statistical properties of
the smooth curve tangent to the crests of the orders sent curve (see Fig.
2.10). On a scale large compared with v , this curve shares the statistical
properties of the demand curve which do not depend on v. Therefore, the
optimal production decisions (i.e., the choices of Vi, V2, and D';} do not
depend on v.

As before, the inventory (maximum and average) can be decomposed
into a portion that is proportional to v (represented by the shaded area in
Fig. 2.10) and independent of the production strategy, and a remaining
portion which is influenced by the production scheme and is independent
of v . Thus, the extra production and inventory costs arising at both the
origin and the destination due to the unpredictability of demand are largely
independent of v . They can be ignored when determining the optimal
shipment size.

The foregoing discussion is not an exception; stochastic effects can be
captured within the scope of a deterministic EOQ model in other situations
as well. Problem 2.6 discusses the use of a private vehicle fleet, and the

following subsection considers an operation where two different transpor-
tation modes are used.

2.5.2 Stochastic Effects Using Two Shipping Modes

It has been assumed so far that stock-outs are avoided by holding invento-
ries large enough to absorb fluctuations in demand and in the transporta-
tion lead time. In some instances, if a second, much more expensive, ship-
ping mode is available for expediting shipments, the total costs may be
reduced by expediting small shipments at critical times. In these instances
the optimal lot size v is also the result of an EOQ trade-oft, although the
trigger point decision is no longer independent of the shipment size deci-
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sion. For the following discussion it is assumed that the expedite mode s
so fast that its lead time can be ignored.

.-

Smooth
approximation

of orders sent
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CUMULATIVE NUMBER OF ITEMS

-

TIME

Fig. 2.10  Inventory effect of production and transportation decisions

Most of the time the expedite mode lies in wait, and the system operates as
if the primary mode was the only mode (see Fig. 2.9). The trigger point v; ,
however, does not have to be chosen as conservatively as before, because
when a stock-out is imminent enough items can be sent by the premium
mode to avoid it.

The analysis is simple. If, as is commonly the case, the time between re-
orders is large compared with the primary mode's lead time (i.e., so that
when the trigger point, vy , is reached there aren't any unfilled orders) then
the probability that some items have to be expedited in the time between
ordering and receiving a lot (of size v ) does not depend on v . It is a de-

creasing function of v, , approaching zero when (vp-E (:FE‘Z_)W)}2 >
var( IE@ )
The exact form of the expected amount expedited per regular shipment

will depend on the strategy used for choosing the expedited lot sizes. (Al-
though these could be fixed, if possible they should be chosen just large
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enough to meet demand until the regular order arrives). In any case, the Sugges
expected amount expedited per regular shipment will also be a decreasing
function of vy , f{vy) . Assuming that the cost per item expedited is a con- 2.1 Prc
stant, ¢, we find that the expected expediting cost per regular shipment is: tot
c.f(vy) . The moving cost per item is as a result: tha
cur
th
(moving cost _ €y +ev e, flv,) _ &y +e, e, ) v,) e ©
Lper item J vt flv,) v+ fv,) o 22 Us
boc
The maximum inventory still occurs when P is as small as possible, and 53 p
_— . rc
remains: v + vy - PQ ; the total cost per item is thus:
24 Prc
c, +lc,-c, v S— inc
costiitem=c, + L ( - v)f( 0) + ch(v + v, - PQ}/D’. suk
v+ flv,) far
For a given vy , if we think of the expected amount shipped by both modes 25 Ift
with every regular shipment, v’ = [v + f(vy)] as the "lot size," the equation 3.8
is still of the EOQ form (2.8a), where the fixed moving cost has been in- ene
creased to include the expected cost of expediting, (c. ~ ¢,)f(vy):
2.6 Ase
. Py , poi
cost/item = {cv e, [vo -PO- flv, )] D } shij
c, + C,-C, fv) cle
L ( - ) (u o, vV/AD'" ram
v .
stat
) ) dise
Unlike in the previous case, though, the trigger point vq should not be cho- the
sen independently of v. If v is large so that shipments are infrequent, expe- =
diting a significant amount of freight with the average shipment only in- E
creases the moving costs marginally. But if v 1s small, the penalty for
expediting is paid more often; it may be more efficient to increase v,




