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3 Optimization Methods: One-to-One
Distribution

Readings for Chapter 3

Newell (1971) shows how to find an optimal sequence of headways for a
transportation route serving a changing demand over time with a contin-
uum approximation method that avoids "details.” This problem is mathe-
matically analogous to the problems with time dependent demand ad-
dressed in this chapter, which are traditionally solved with dynamic
programming. Section 3.3, is based on this reference. Daganzo (1987)
shows that a continuous approximation of a function and its variables can
be more accurate than the exact, detailed and discontinuous world repre-
sentation they replace. This result is discussed in Section 3.2,

3.1 Initial Remarks

This chapter describes logistics problems linking one origin and one desti-
nation (one-to-one problems) and the methods used to solve them. The fol-
lowing points, mentioned in Chapter 1, will be revisited:

(i} Accurate cost estimates can be obtained without precise, detailed in-
put data, ‘

(i1) Departures from an optimal decision by a moderate percentage do
not increase cost significantly. Since there is no need to seek the
most accurate estimate of the optimum, there may be little use for
highly detailed data,

(111) Detailed data may get in the way of the optimization, actually hin-
dering the search for an optimum,

(iv) Thus, we advocate a two-step solution approach to logistics prob-

lems: the first (analytical) step involves little detail and yields broad

solution concepts; the second (or fine tuning) step leads to specific
solutions, consistent with the ideals revealed by the first ~ it uses all
the relevant detailed information.
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These points will be illustrated with simple extensions of the EOQ model
introduced in Chapter 2. Section 3.2 analyzes one-to-one systems with
constant production and consumption rates; the discussion focuses on the
robustness and accuracy of the results. Section 3.3 examines the same
problem when the demand varies over time; it describes numerical meth-
ods and a continuous approximation (CA) analytical approach that is based
on summarized data. Section 3.4 illustrates how the CA approach can be
used for a location problem that has an analogous structure, and Section
3.5 demonstrates the accuracy of the CA solutions.

As a prelude to the more complex problems explored in forthcoming
chapters, Section 3.6 explains how the CA approach can be extended to

multidimensional problems with constraints, and Section 3.7 discusses
network design issues.

3.2 The Lot Size Problem with Constant Demand

Let us now explore the optimization problem for the optimum shipment
size, v , described in the previous chapter;

3
z:min.JAv+§.‘ vﬁvmaxﬁ‘ (3.0
{ v j

Consider first the case v, == . Then v" is the value of v which minimizes
the convex expression Av + By

v’ :\/Z—?T. (3.2)

Remember that B represented the fixed motion costs, ¢r, and A the holding
cost per item, ¢/D'. Note that v’ is the value which makes both terms of
the objective function equal. That is, for an optimal shipment size, holding
cost = motion cost.

The optimum cost per item is;
z = (cosi/itemy =2 AB {3.3)
which is easy to remember as "twice the square root of the product” of the

two terms of (3.1). It will be convenient to memorize Egs. (3.2} and (3.3},
simce EOQ minimization expressions will arise frequently.
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As a function of ¢, ¢, and ', the optimum cost per item increases at a de-
creasing rate with ¢y and ¢, and decreases with the item flow ', There are
cconomies of scale. since higher item flows lead to lesser average cost.

In the remainder of this section we examine the sensitivity of the result-
ing cost to etrors in: (1) the decision variable, v , (ii) the inputs (A or B},
and (iii) the functional form of the equation.

3.2.1 Robustness in the Decision Variable

Suppose that instead of v" . the chosen shipment size is V' = v, where
y ' is a number close to 1, capturing the relative error in v, Then, the ratio
of the actual to optimum cost 27" will be a number, v', greater than 1, sat-

isfying:

)= AE;&B\%H / [zﬁﬁ]m—gﬂl S X5

L7

Independent of A and B, this relationship between input and output rela-
tive errors holds for all EOQ models. It indicates that if v is between 0.3
and 2, so that the optimal shipment size is approximated to within a factor
of 2, then vy < 1.25. If v is between 0.8 and 1.25, then y' < 1.025. Thus, a
cost within 2.5 percent of the optimuim can be reached if the decision vari-
able is within 25 percent of optimal. On the other hand, if'y is several times
larger (or smaller) than 1, then the cost penalty is severe, i.e., Y Y {ory =
1/y) . Obviously, thus, while it is important to get reasonably close to the
optimal value of the decision variable (say to within 20 to 40 percent),
from a practical standpoint it may not be imperative to refine the decision

beyond this level.

2.2.2 Robustness in Data Errors

Let us now assume that one of the cost coefficients A (or B) is not known
precisely. If it is believed to be A' = Ad (or B' = B3) , for some § = 1, then
the optimal decision with this erToneous cost structure is:

! This symbol is unrelated to the coefficient of variation of the prior chapter, also denoted by v.
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if A=A48,

if B'=BS.

Because the actual to optimal shipment size ratio, vy, is either 677 or
8'% (see Eq. (3.2)), the cost penalty paid is as ity = "7 . Thus, the resulting
cost is even less sensitive to the data than it is to the decision variables. For
example, if the input is known to within a factor of 2 (0.5 < 8 < 2}, then
0.7 < v < 14 and v < 1.1 . The cost penalty would be about 10 percent,
whereas before it was 25 percent. The penalty declines quickly as 8 ap-
proaches 1. This robustness to data errors is fortunate because, as we
pointed out in Chapter 2, the cost coefficients (for waiting cost especially)
are rarely known accurately.

3.2.3 Robustness in Model Errors

A cost penalty is also paid if the EOQ formula itself is inaccurate. To illus-
trate the impact of such functional errors, we assume that the actual cost, a
complicated (perhaps unknown) expression, can be bounded by two EOQ
expressions; the cost penalty can then be related to the width of the
bounds.

Suppose, for example, that the actual holding cost zy{(v) is not exactly
equal to the EOQ term (Av), but it satisties:

Av-A2<z (v)S Av+ A2

for some small A . (Such a situation could happen, for example, if storage
space could only be obtained in discrete amounts.) Because A is small, the
EOQ lot size v is adopted. Clearly, then the absolute difference between
the actual cost [z(v' )+ B/v'] and the predicted EOQ cost z cannot exceed
A/2 . It is also easy to see that the difference between the optimal cost with
perfect information, min{z,(v) + B/v}, and z cannot exceed A/2 either. As
a result, the difference between the actual and theoretical minimum costs —
the cost penalty —is bounded by A.

Usually, though, this penalty will be significantly smaller than the
maximum possible; Figure 3.1 illustrates the unusual conditions generating
the largest penalty. Thus, if A is small compared to z (e.g., within 0 per-
cent) the functional form error should be inconsequential. The same con-
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clusion is reached if the motion cost is also inaccurate. In general, the EOGQ
solution will be reasonable if it is accurate 10 within a small fraction of its
predicted optimal cost.

A

=
h# ——
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w2
85
o =
m gt
8
Motion cost
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w E ind * \\
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Fig. 3.1 Cost penalty resulting from errors in the holding cost function

3.2.4 Error Combinations

If errors of the three types exist, one would expect the cost penalty to be
greater. Fortunately though, when dealing with errors the whole (the com-
bined penalty) is not as great as the sum of its parts.

i O

S

=
e
E:
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Suppose for example that the lot size recipe is not followed very precisely
(because, e.g., lots are chosen to be multiples of a box, only certain dis-
patching times are feasible, etc.) and that as a result 40 percent discrepan-
cies are expected between the calculated and actual lot sizes. We have al-
ready seen that such discrepancies can be expected to increase cost by
about 10 percent. Let us assume, in addition, that one of the inputs (A or
B) is suspected 1o be in error by a factor of 2, which taken alone would
also increase cost by about 10 percent. Would it then be reasonable to ex-
pect a 20 percent cost increase? The answer is no; it should be intuitive
that the penalty paid by introducing an input error when the lot size deci-
sion does not follow the recipe accurately should be smaller than the pen-
alty paid if the decision follows the recipe. In our example, the combined
likely increase is 14 percent [the square root of the sum of the squared er-
rors: .14 = (17 + 197, Statistical analysis of error propagation through
models reveals similar composition laws in more general contexts (see
¢.g., Daganzo, 1985). This subject, however, is beyond the scope of this
monograph. Further information can be found in Taylor (1997).

The above example illustrated how input and decision errors propagate.
Although model errors follow similar laws — the whole is stil] less than the
sum of the parts — for some approximate models the results are surprising.
The composed (data and model) error can be actually smaller than the data
error alone with the exact model! {Daganzo, 1987). This fortuitous phe-
nomenon, illustrated by problem 3.1, has a special significance because it
arises when, as recommended in this monograph, certain discontinuous
models with discrete inputs are approximated by continuous functions and
data. A more detailed discussion of this issue can be found in Daganzo
(1987).

For ease of exposition, our discussion of robustness and errors ignored
the v < v, constraint of Eq. (3.1), although similar remarks could have
been made for the constrained solution and other non-EOQ models {see
exercise 3.10). The constrained EOQ solution is now presented rather
briefly, before turning our attention to the lot size problem with variable
demand.

If, in solving the unconstrained EQOQ problem, we find that v > Vinax s
then the solution is not feasible. In that case, choosing v = v,,,, i3 optimal.
Hence, the optimal EOQ solution can be expressed as:

-
[
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and the optimal cost per item 7 is:

= =2J4B if NBA S,
fr— A
v+ ABA Vg (3.30)

max

Note that z is an increasing and concave function of A , and also of B (see
Fig. 3.2a and b). As a function of /A = D'/ey, and thus of D', z is decreas-
ing and convex; the economies of scale continue to exist for all ranges of
D'. Finally, note that the total cost per unit time, D'z , is proportional to
D' until the capacity constraint is reached, and from then on increases
linearly with D'. The critical point is D'e = (vmx)zlcf . The general form of
the relationship is depicted in Fig. 3.2¢.

. {a)

[ I WREPION

] '
crit D

Fig. 3.2 Optimal EOQ cost as a function various parameters: {(a) holding cost
per item, A; (b) fixed motion costs, B; and (¢} demand rate, D'
Dashed lines are the unused branches of Eq. (3.5b)
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3.3 The Lot Size Probiem with Variable Demand

Let us now consider the EQQ problem over a finite time horizon when the
consumption rate D' changes with time in a predictable manner. The de-
mand patiern, an input to our problem, is characterized by a function D(t)
that gives the cumulative number of items demanded between times 0 (the
beginning of the study period) and t . The time derivative of this function
D'(t) represents the variable demand rate. We then seek the set of times
when shipments are to be received (t; = 0, t; , ..., tp.;), and the shipment
sizes (Vg Vi, .o, Vi), that will minimize the sum of the motion plus hold-
ing costs over our hotizon, t£{0, ty.].

As in Chapter 2, we also define as inputs to our problem a fixed (mo-
tion) cost per vehicle dispatch ¢, a holding cost per item-time ¢y, = ¢, + ¢;,
and a maximum lot 5i7e Vaa . With an infinite horizon and a constant de-
mand, D(t) = D't this formulation reduces to the EOQ problem examined
in Section 3.2, where A =¢/D)' and B = ¢;.

For most of this section, we assume that the v,,,, constraint can be ig-
nored. We wili relax this restriction in Section 3.6. Subsection 3.3.1, be-
low, examines the variable demand problem when rent costs are the domi-
nant part of holding cost; a simple solution can then be obtained. Subsec-
tion 3.3.2 shows that if inventory (walting) costs are dominant, then the
sofution is not quite as apparent; two solution methods are then described:
a numerical method in subsection 3.3.3 and an analytical method in sub-
section 3.3.4.

3.3.1 Solution When Holding Cost Is Close to the Rent Cost

If inventory cost is negligible, ¢; << ¢, then holding cost approximately
equals rent cost ¢, = ¢ . We have already mentioned that rent cost in-
creases with the maximum inventory accumulation (regardless of when it is
held), and that otherwise the cost is rather insensitive to the accumulations
at other times. This property of holding cost simplifies the solution to our
problem.

Recall from Sec. 2.3 that given a set of n shipments, the motion cost
during the period of analysis, ¢ , 1s independent of the shipment times
and sizes. The problem, then, is to find the sets of shipment times and sizes
that will minimize holding cost. A lower bound to the maximum ac-
cumnulation at the destination Is the size of the largest shipment received,
which is minimized when all the shipments are equal, Hence, the largest
shipment — and, thus, the maximum accumulation — must exceed or at least
equal D(t,.m . If a set of times and shipment sizes is found for which the
maximum accumulation equals D{t,.¥n, the set is an optimal way of
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sending n shipments with rent cost per unit time: ¢D(tmex 0t . Figure 3.3
depicts such a solution for a hypothetical cumulative consumption curve
D(t) . Each shipment is just large enough to meet the demand until the next
shipment; the consumption between consecutive receiving times, the same
in all cases, is D{tma)/n . Clearly then, the following strategy is optimal:

(i) Divide the ordinate axis hetween 0 and Dftne) into n equal seg-
ments and find the times t; for which D(t) equals (i/)D(tes) for
i=0,..,n- 1. These are the shipment times,

(ii) Dispatch barely enough to cover the demand until the following
shipment.

One must now find the optimal n by minimizing the resulting cost. Inter-
estingly, it does not depend on the t;, only onm:

cosi/time=c¢, (D(Imax )/n)w% ¢, {1/t ), and
(¢, V[ Dltga )Y n ) (3.6)
P :

cost/itemn = | mide | — T A
le}{\ n (rmax))

where [’ is the average consumption rate:
D’ = D(tmax )/tmax ‘

Note that (3.6) is the EOQ expression with v = D{tma/n . The solution
now requires that n be an integer (there are constraints on v), but we have
already seen that any v close to the unconstrained v* is near optimal. As a
result, unless the time horizon is so short that n* = 1 or 2, the optimal cost
per item should be close to the cost with constant demand.

It should be intuitive that if Vi < =, the solution procedure does not
change. It is still optimal to have equal shipment sizes, but the number of
shipments should be large enough to satisfy: D{tma D € Vigax. The solution
is still of the form (3.5), with v restricted to being an integer multiple of

Pltra) -
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Fig. 3.3 Selection of shipment times for Jeast holding cost

3.3.2 Solution when Rent Cost Is Negligible

Let us now examine another extreme but common situation, where items
are so small and expensive, that most of the holding cost arises from the
ttem-hours spent in inventory, and not from the rent for the space to hold
them. In this case the destination’s holding cost should be proportional to
the shaded area of Fig. 3.3.

The combined origin-destination holding cost will also be proportional
to this area if {ij the origin holding cost can be ignored, or (if) if it is pro-
portional to the area. Situation (i} arises if the origin produces generic
ftems for so many destinations that the part of its costs that would he pro-
rated to cach destination is negligible. The second situation arises if the
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production strategy at the origin is as described in Fig. 2.10. Then, we see
from that figure that the total wait at the origin that can be attributed 1o the
shipping strategy must be similar to that of the destination; i.e., it would
also be proportional to the shaded area of Fig. 3.3. A third scenario arises
with typical passenger transportation systems.

When holding costs are proportional to the area of Fig. 3.3 they are no
longer a function of n alone. Newell {1971) points out that for a set of

points (1 ... t,.1) to be optimal, each line PQ (of Fig. 3.3) must be parallel

to the tangent line to D(t) at the receiving time (point T in the figure). The
reader can verify that if this condition is not satisfied, then it is possible to
reduce the total shaded area by either advancing or delaying the receiving
time by a small amount.

Unfortunately, the smallest shaded area - and thus the waiting cost — no
longer can be expressed as a function of n alone, independently of D(t).
Thus, it seems that a simple expression for the optimal cost cannot be ob-
tained for any D(1) . (Subsection 3.3.4 develops an approximation when
D(t) varies slowly with 1),

3.3.2 Numerical Solution

There are different ways in which this problem can be solved numerically.
For example, it can be formulated as a dynamic program in which a ship-
ment time, t; , is chosen at each stage (i=1, .., n- 1), and where the state
of the system is the prior shipment time, t., . The dynamic programming
procedure yields an optimum holding cost for a given n , z {n) , which can
be substituted for the first term of Eq. (3.6) to yield n.

The following procedure, based on Newell's property, is less laborious
and works particularly well if D(1) is smooth, without bends or jumps (re-
fer to Figure 3.4 for the explanation):

(i) Choose a point P, on the ordinates axis and move across to Ty
(i) Draw from P, a line parallel to the tangent to D(t) at Ty, and draw
from T, a vertical line. Label the point of intersection P; .

Steps (i)-and (ii) identify a point P; from a point P, . They should be re-
peated to identify P; from Py, Py from P, etc. ..., defining in this manner a
receiving step curve, R(t). If R(t) does not pass through the end point,
(tmax » (), the position of P, should be perturbed until it does.
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if a different point P, is chosen, a different number of steps may result, and
the motion cost will change.? The hoiding cost for the given P, is propor-
tional to the area between R(t) and D(t) ; it will also change if P, is moved.
The overall optimum can be found by shifting the position of P, and com-
paring the sum of the holding and motion costs.

A

Dt

E
|+
»

CUMULATIVE
NUMBER OF ITEMS

TIME

Fig. 3.4

Construction method for the cumulative number of items shipped ver-
sus time

3.3.4 The Continuous Approximation Method

The method about to be described, proposed by Newell (1971), replaces
the search for {;} by a search for a continuous function, whose knowledge

1 As itlustrazed with problem 3.6, thiere may be maore than one solution with the same number of steps.
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yields a set of t; with near minimal cost. It works well when D'(1) does not
change rapidly; i.e., if D) = D'(ti-p) forall 1. A by-product is a simple
expression and decomposition principle for the total cost.

Let us assume that an optimal solution has been found, and denote by L,
the ith interval between consecutive receiving times: [ti , .= 1L 2, .
Then, divide the total cost during the study period into portions "cost," cor-
responding to each interval. That is, "cost;” includes the cost, ¢, of dis-
patching one shipment plus the product of ¢; and the shaded area for inter-
val [i:

cost; =¢; T¢ (area(,- )

Clearly, the sum of the prorated costs will equal the total cost. Since D)
is continuous, it should be intuitive that there is a point t} in each interval k;
for which the area above D(t) satisfies: area; = Va(t-1,. Y D'(t). To see this
informally, consider the triangle defined by the horizontal and vertical
fines passing through a point Py in the figure and a straight line passing
through T, with a slope that yields "area;" for the triangle; i.¢. slope ¥y .
Since such a slanted line must intersect D(t) (otherwise the areas above
D(t) and above the slanted line could not be equal} there must be a point
between T; and the point of intersection where the two lines have the same

slope. The abscissa of this point is t. Therefore we can write:

5

ared, :%(f; - ti~1)2D’(t'i): j%(ti '—tf‘wi)D’(ff)dl : (3.7)

fii

1f we now define H(t) as a step function such that HJ(1) = § - t.y i t€]; (see
Figure 3.5 for an example), then the cost per interval can be expressed as:

" :“?C‘f _LCIH(i) r,A\
cost, jELH.s(t) 5 D(ff)‘jd"" 3.8

[i%4

- Note that this is an exact expression.

If we now approximate D'(t';) by D) — which is reasonable if D'(t) varies

“slowly — the total cost over the whole study period can be expressed as the

following integral:

frmax |
_ max | Cf Cf H$(f) B 1 ;
cost = aji{ﬁ (r)-l———m-——-z () | dr . (3.9)




62 One-to-One Distribution

HEADWAYS

°l
YR e

H{t)
-

i
|
‘ i
to t, t TIME
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Obtaining a set of dispatching times from H(t)

We seek the function H(t), which minimizes (3.9). Unfortunately, this is
akin to determining the {t;} themselves. A closed form solution can be ob-
tained if in (3.9) Hy(1) is replaced by a smooth function, H(t) , as shown in
Fig. 3.5. That is:

fmae . . 1
cost = J.[—C—f—%aH(r) D'(t)gdf. (3.10)

4 H (I) 2 _l

Now, instead of finding H{(t), we can find the H(t) which minimizes
(3.10) — a much easier task — and then choose a set of shipment times (i.e.,
Hy(t)) consistent with H().

Clearly, the H(t) which minimizes (3.10) minimizes the integrand at
every t ; thus:

Hiy= [ 2¢, / q.D’(t))] " (3.11a)

This is the time between dispatches (headway) for the EOQ problem with
constant demand D' = D'(¢) .
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A set of shipment times consistent with H(t) can be found easily since H(1)
varies slowly with t ; see (3.11a). Figure 3.5 suggests how this can be done
systematically: Starting at the origin (point t)) draw a 457 line and find a
horizontal segment from a point on the vertical axis, such as P in the fig-
ure, to the intersection with the 45° line. The elevation of P, should be
such that the area below the segment equals the area below H(t). The ab-
scissa of the point of intersection is the next shipment time, t;. This locates
t, , given ty . The construction is then repeated from 1, to locate t2, from to |
to focate ¢ , etc. In practice one does not need to be quite so precise, since
we have already seen that small deviations from optimality have a minor
effect.

Replacing the right side of (3.11a) for H(t) in integral (3.10) yields a
simple expression for the optimal cost:

Total cost = IHT [2CinDI(f)] g (3.11b)

4

The integrand of this expression is the optimal EOQ cost per unit time if D'
= D'(t).
Note that the integrand of Eq. (3.11b) can be written as:

Lee, 0] [D()dr],

where the first factor represents the optimal cost per ifem for an EOQ
problem with constant demand, D'(t) ; see Eq. (3.3). The average cost per
item (across all the items) is obtained by dividing (3.11b) by the total
number of itemns,

Dit

AR

The result is:

j e, OV D)y e

cosl*\; ol
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In practical terms this equation indicates that the average optimal cost per
item can be obtained by averaging the cost of all the items, as if each one
of these was given by the EOQ formula with a (constant) demand rate
equal to the demand rate at the time when the item is consumed.

Equation {(3.11b) has a similar {(decomposition} interpretation: the ex-
pression indicates that, given a partition of [0, tn.] into a collection of
short time intervals, the optimum cost can be approximated by the sum of
the EOQ costs for each one of the intervals considered isolated from the
others.

Equations (3.11) are so simple that they can be used as building blocks
for the study of more complex problems as we shall see in later chapters.
This is one of the attractive features of the CA approach; it yields cost es-
timates without having to develop, or even define, a detailed solution to
the problem,

The CA approach can also be used to locate points on any line {time or
otherwise) provided that the total cost can be prorated approximately io
{short) intervals on the line, while ensuring that the prorated cost to any
interval only depends on the characteristics of said interval. In the previ-
ous discussion, the integrand of (3.10) is the prorated cost in {t, tHdt) ,
which does not depend on the demand rate outside the interval.

The CA approach can also be used to locate points in multidimensional
space, when the total cost can be expressed as a sum of neighborhood costs
dependent only on their local characteristics. Newell (1973) argues that the
CA approach is comparatively more useful then, because in the multidi-
mensional case it is much more difficult for exact numerical methods 1o
deal with the complex boundary conditions that arise. Because the CA ap-
proach will be used in forthcoming chapters repeatedly, the next section
discusses two additional (one-dimensional) examples.

3.4 Other One-Dimensional Location Problems

The CA technigue was originally proposed to find a near-optimal bus de-
parture schedule from a depot (Newell, 1971). Given the cumulative num-
ber of people D(t) demanding service by time t, the fixed cost of a bus dis-
patch ¢, and the cost of each person-hour waited ¢ , the objective was to
minimize the sum of the bus dispatch (motion) and waiting (holding) costs.
With an uniimited bus capacity, this problem is aimost identical to the one
we have just solved; except for D(t) , which now represents the cumulative
number of people (items) enzering the system and not the number leaving.
Equations (3.11), however, still hold (see problem 3.2) This should be in-
tuitive. Although the graphical construction of Figure 3.4 is now slightly
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different (i.e., the sought passenger departure curve R(t) now touches D(1)
from below) consideration shows that the new and old figures become
qualitatively identical if one of them is rotated 180 degrees. Since such a

rate
rotation cannot change the mathematical relationships between the ele-
ex- ments of the figure, it shouldn't be surprising that Eqgs. (3.11) remain valid.
n of The second example locates freight terminals on a distance line between

m of 0 and d,,. This interval contains origins, which send items to a depot.

1 the P The distance line extends from the origin, O , to a depot, located at d =
N 4> d,... The flow of freight (number of items per day) that originates be-
rween O and d is a function of d , D(d), which increases from 0 to vy, (326
wers. Figure 3.6). ltems are individually carried to the terminals at a cost ¢4 per
it es- unit distance per item. Each day a vehicle travels the route collecting the
m to : items accumulated at each terminal and takes them to the depot.

The motion cost for this operation has three components: the handling
cost at the terminals, assumed to be constant and therefore ignored, the ac-
cess cost to the terminals, and the line-haul cost of operating the vehicle
Y any from the terminals to the depot. The access cost is given by the product of
revi- _ ¢'s and the total item-miles of access traveled per day; it increases with the
-diy , _ separation between stops as will be explained in a moment. The line-haul

' cost has the form of Eq. (2.5d):
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253;2 where n, is the number of stops (excluding the depot) and v is the total

wotion " size of the shipment arriving at the depot. Note that the line-haul cost does
not depend on the specific stop locations and that in contrast to the access
cost, it increases with n.. As a function of n, we express it as:

(hne < haul —c"+en,, (3.12)
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where ¢° is a constant that will be ignored for design purposes.

As the problem has been formulated, with one trip per day, the sum of
the holding costs at all stops can be ignored — consideration reveals that the
sum is constant. Pipeline inventory costs do depend on the decision varia-
bles (they should increase with ng) but for cheap freight the effect is negli-
gible relative to (3.12). Thus, all inventory and holding costs are neglected.
The stops will be focated as the result of a trade-off between line-haul and
access costs. Without this simplification, which is inappropriate for pas-

be in-
ightly
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senger transportation, the problem is equivalent to the transit stop locatip
problem solved by Vuchic and Newell (1968) with dynamic programmin
and later by Hurdle (1973), and Wirasinghe and Ghoneim (1981) wzth th
CA method. (See problem 3.3). .

Figure 3.6 depicts the location of three terminals (at points d,, dz, an;g e
d;) and a curve, R(d), depicting the number of items in the vehicle ag
function of its position. This curve increases in steps at each terminal Toe:
tion. The size of each step equals the number of items collected. To min
mize access (and total) cost each ifem is routed to the nearest ierminal, and
as a result the step curve passes through the midpoints, M; , shown in
figure. (The coordinates of M; are my; = (d; + di, /2 and D(my;); with m,
and my, = dypax ).

Let us see how the total cost can be prorated to short intervals, by Cot
sidering the partition of (0, dy,] into the following intervals surrounding:
each terminal: I, = (0, m], L = (my, my] , ..., L= (my,., :dns]. Bach inter
val, I;, adds an access cost proportional to the daily item-miles traveled for
access to terminal i . This is given by the shaded area on the two quasis
riangular segments next to the location of the terminal, (area); , thus:

dCeess cost; (ar E’a) 'y

For slowly varying D(d)}, the access cost can be rewritten as:

access cost, = % (f?’!,» - )2 D'(d, )C?d :

Since each terminal adds ¢, to the daily line-haul cost (see Eq. (3. 12)) th
share of the total cost prorated to [; is:

Total cost} _ cag 2 puf
{pera’ay },WC& + y (m m_, ) D(d,-)‘
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Fig. 3.6  Geometrical construction for a terminal location probiem

Since D'(d) = D'(d)) for del; (we stated that D'(d) varied slowly), the above
¢xpression can be approximated by:

Total costy 't ( Cs ¢ , L
_ L RN g | 2 4 U g 1 2
et} 1oy om0

I‘f we now let s(d) denote a slowly varying function such that
s(d} m;-m,.; (the function, used later to locate the terminals, indicates the
' size of a terminal's influence arca dependmg on location), then we can re-
- Write the last expression once again, using s(d) instead of m; - mi:

| per day

(Toia! cost} N "if jgf";%;j‘*%s(d})ﬁ’(d)\}dd

I
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The total cost for the system is then:

5( Total cost) _ )
\ per day N

S 45 () D)} dd
i) 45() (dj (3.13)

b

As with Egs. (3.11), the least cost s(d) minimizes the integrand at every
point; given its EOQ analytical form, we find:

stdi=2[c, / (¢, D). (3.14a)

{Note that if D' varies slowly, s(d) will vary slowly as we had assumed.)

The expressions for the minimum total and average (per item) cost are
similar to (3.11b) and (3.11c); the partition/decomposition principle still
holds.

Total cost ’ i
perunit | = I [e.c', D'd) |'# dd (3.14b)

of time v

Fragx i

Cost'/item= | le,c'y / D)) D'ld)dd / [ D(d)dd.  (.4e)
i

7

To locate the terminals, one first divides (0, duu] into non-overlapping in-
tervals of approximately correct, length I, I, ete. ..., by starting at one end
and using (3.14a) repeatedly. If the last interval is not of correct length,
then the difference can be absorbed by small changes to the other intervals.
If dyex is large (so that there are at least several intervals), then the final
partition should satisfy s(d) = mi-mq, if del; , and the approximations lead-
ing to (3.14) should be valid. With the influence areas defined in this man-
ner, the terminals are located next. They should be positioned within each
interval so that the boundary between neighboring intervals is equidistant
from the terminals. For a general sequence of intervals (e.g.. of rapidly
fiuctuating lengths) this may be difficuit (even impossible) to do, but for
our problem with ;| = L. the best locations should be near the center of
each interval; in fact little is lost by locating the terminals at the centers.
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3.5 Accuracy of the CA Expression

Although a systematic analysis of its errors has not been reported, experi-
ence indicates that the CA approach is very accurate when the descriptive
characteristics of the problem (I'(1) in the text's examples) vary slowly as
assumed. Also quite robust, the approach is effective even if the variation
in conditions is fairly rapid — in our case, accurate results are obtained
even if D'(0) varies by a factor of two within the influence areas. Perhaps
this should not be surprising, in light of the EOQ robustness discussed in
Section 3.2.

When conditions are unfavorable, the CA method can both over- and
underpredict the optimal.cost. The following two examples identify said
conditions, with the first example illustrating over-estimation and the sec-
ond underestimation. The basis for comparison will be the exact solution,
which for our problem can be obtained readily, as described below.

3.5.1 An Exact Procedure and Two Examples

A construction similar to that in Fig. 3.4 can also be used for the terminal
location problem.

Note first that, given n, , for a set of locations to be optimal the line D{d)
of Fig. 3.6 must bisect in two equal halves every vertical segment of R(d} .
Otherwise, the terminal (e.g., terminal 3 of Fig. 3.6) could be moved
slightly to decrease access cost. The optimal solution can then be found by
comparing all the possible R(t) with the above property.

For a given d, , draw a vertical step that is bisected by D{(d), and move
across horizontally so that the horizontal segment is also bisected by D(1) .
This identifies d, . Repeat the construction to find di, d., etc. (Only those
values of d; for which the last vertical segment is bisected by D(1) need to
be considered seriously.) The optimal solution corresponds to a d; which
minimizes the sum of the stop cost and access cost. The procedure is so
simple that it can be implemented in spreadsheet form. (The user selects d;
and the spreadsheet returns the graphs, and the cost; it is then easy to find
the solution either interactively or automatically with the computer.} The
examples can now be discussed.
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Example I:
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Fig. 3.7  Cumulative demand versus distance for example 1

Terminals are to be located on two adjoining regions with high and low
demand. Figure 3.7 depicts a generic piece-wise linear cumulative demand
curve of this type. The coordinates of the break-point (distance, item num-
ber) are given by parameters “a” and “b”. They, of course must be consis-
tent with the specified values for dpax » D(dumas), D', and I'; . For this prob-
lem the continuum approximation approach yields — see Eq. (3.14b):

Total cost” ={c.¢'; )/ ‘iawf}w)m’? +ld_,. - al/ D', ;l
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A possible set of parameters is e = 500, D{dpe) = 1700, D7 = 1,D»=3,
a=h=200cs=land ¢~ 160,000. This choice has been made because a
systematic analysis shows that it produces the largest overprediction error
in percentage terms. The predicted cost is:

Total cost* = 348328,

In actuality the least possible cost is 8% smaller. It arises when a single
terminal is jocated at d = 330. The reader can verify that the exact access
cost for this location is 160,500 units. Since the terminal cost is 160,000
units {for one terminal), the grand total is 320,500 < 348,328.

This rather extreme example iHlustrates that the CA approach can over-
estimate the optimum cost. To understand why this happens let us decom-
pose the CA costs into its components. Note first that the ideal spacing be-
tween terminals predicted by the CA method with (3.14a) is:

s{d) = 800 in the Tow demand section, and
s{dy = 357 in the high demand section.

Thus, the CA access cost 1 calculated as if the average access distance was
s(dy4 = 200 in the low demand section and 89.25 units in the high demand
section. Since there are 200 items in the low density region and 1500 in the
high density region, the total CA access cost is approximately: 200200 +
89.25x1500 =173,875. The CA stop cost is calculated by integrating the
density of terminals over the service region, (200/800 + 300/357) = 1.09,
and multiplying this result by the cost of a terminal: 1.09x160,000 =
174,400. The grand total is therefore: 173,875 + 174,400 = 348,275 =
348,328,

1t turns out, however, that just a single terminal in the high density re-
gion can serve both, the low density points with an average distance barely
greater than the CA access distance. and the high demand section with an
average access distance considerably inferior to the corresponding CA dis-
tance. For our chosen location (d = 330) the actual average access dis-
tances are: 230 units for the low density section (200 with the CA method)
and 76 for the high density section (89 with CA method). Since we are us-
ing only one terminal, the final cost is lower. :

The overprediction effect arises because the demand curve varies sig-
nificantly and very favorably between the terminal and the edge of the ser-
vice region, and the CA approach does not exploit this variation. The
variation is so favorable that it allows a terminal provided for the high den-
sity points to double up efficiently as a terminal for the low density points.
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Favorable conditions are unusual, however. When the demand does not
vary rapidly the CA approach consistently underestimates demand.

Example 2: An example where the CA approach underestimates cost is
easy to construct. By its nature, the CA approach ignores that the number
of terminals must be an integer; any situation with a finite region size (or
time horizon) will exhibit this error type. To exclude the overprediction er-
ror type illustrated by example 1, the demand per unit length of region is
set constant: D'(d) = D' . This also allows closed form comparisons to be

made.
The CA solution (3.14b) is:

Total cost” =Jc.c', JD' d

Without losing generality, we choose the units of distance, item quantity
and money so that duey = 1, D(dne) = Fand = 1. Thus, D' = 1 and only
the parameter ¢’y remains. The above expression becomes:

Total cost™*=,Jc', . (3.15a)

If the exact optimat solution has n, terminals, the distance line will be par-
titioned into n, intervals of equal length: I; = ((i - 1)/n,, i/ny]. The total cost
is then:

P

5

Total cosi (n, ) = n, + 2n, { [ E ] £l n, + ::—-‘Z— (3.15b)
M

which is an EOQ expression in n, . Its minimum over n; = 1, 2, 3, ... is the
optimal cost.

This least cost will always be greater or equal to the right side of Eq.
(3.15a) because (3.15a) is the minimum of (3.15b) with unrestricted n, ,
obtained for n*, = (¢'y/4)"". Clearly, the underprediction will be most sig-
nificant when n*. is close to an odd multiple of 0.5, or close to zero. Equa-
tion (3.4), which described the sensitivity of the EOQ cost expression
errors in the decision variables, also guantifies this underprediction; as n*;
increases the underprediction quickly vanishes. Once ¢y > 16 (% is
greater than 2) the difference is below one percent. If ¢'s > 4 (the value at
which n*, = 1) then the maximum difference stays below six percent. Al-
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though for smaller ¢'; the difference can grow arbitrarily large as ¢'; ~ 0,
that is not the case that is likely to be of interest; the large spacing between
terminals recommended by the CA method (much larger than d...) indi-
cates that operating line-haul vehicles is probably an overkill. If it were of
interest, and 2 terminal had to be provided, one could force the solution to
the CA approach to satisfy the constraint n, > 1 . The next section will dis-
cuss how more involved constraints can be accommodated within a gen-
eral CA framework.

Although exhibiting different errors types, both examples shared a
common irait when their errors were largest: the ideal terminal spacing in
an interval with constant demand exceeded the length of the interval; i.e.,
demand varied significantly within the spacing. Errors arose because this
property violates the stated requirement for the CA approach: DX d) should
vary slowly over distances comparable with s(d). Conversely, the numeri-
cal results prove that an error below one percent results if D(d) is piece-
wise linear with segments at least three times as long as each s(d). Thus,
any demand function that can be approximated in this manner should also
yield accurate results.

3.6 Generalization of the CA Approach

The CA method can be applied to more complex problems -~ even prob-
lems that defy exact numerical solution. In forthcoming chapters it will be
used to locate points in multidimensional (time-space) domains while sat-
isfying decision varigble constraints.

All that is needed is that the input data vary slowly with position, either
in one or multiple dimensions, that the total cost can be expressed as a sum
of costs over non-overlapping (small) regions of the location domain, and
that these component costs (and constraints) depend only on the decisions
made in their regions. If this is true, the decomposition principle holds and
the CA results approximate the optimal cost accurately.

As a one-dimensional illustration, let us return to the inventory control
problem of Eqs. (3.7) to {3.11), and let us assume that there is a capacity
constraint on shipment size:

D(f,—)- D(ti—l )S Vinax

This constraint has a local nature because it only involves quantities de-
termined by events close to the time of shipment; i.e., by two neighboring
dispatching times and by the amount of consumption between them. For
any time t, thus, it should be possible to write the constraint approximately
as an inequality including only variables and data specific to time L.
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Recalling the definition of Hy(t) (see Fig. 3.6), and using the slow-varying
property of D'{(t), we can write:

Dl )- Dl )= H (1)D'(r) = H(1)D'(r)

and the constraint can be replaced by the approximation based only on
conditions at £

HeD'(t)<v,, ., or Hi)< Vo D),
which must be satisfied for all t.

An approximate solution to our problem, thus, is an H(t) that minimizes
(3.10) subject to this constraint. The solution is of the form indicated by
Egs. (3.5); i.e., the optimal H(t) is the least of* (i) the right side of (3.11a),
(2cdc; D), and (i1} vina/D'(t). Letting ¥ {x} denote the increasing con-
cave function {x ifx < 1 ; or Vobl + x| if x > 1}, we can express the
minimum cost per unit time concisely in terms of the dimensionless quan-
tity, 2eD'(0AC; Vo ) -

Cr"”mxf//{ 2¢, D'(tyey! |

ax f-

Integrated from 0 to t,., , this expression approximates the optimal total
cost, as in Eq. (3.11b). Note that when the argument of ¥ is less than one,
as would happen if v, is very large, then the expression coincides with
the integrand of (3.11b), [2¢ieD'(1)]'”. An average cost per item can also
be obtained as in Eq. (3.11c); its interpretation as a cost average across
items (calculated as if each item was part of a problem with constant con-
ditions, equal to the local conditions for the item) is still valid.

In practical cases, a per-item cost estimate can be obtained easily with
the following two-step procedure:

{t) Solve the problem with constant conditions for a representative
sample of items and input data,

(1) Average the solution across all the sampled items to obtain the re-
sult.

Note that the cost estimate can be obtained even without defining the deci-

sion variables in step (i). Problem 3.5 illusirates the accuracy of the CA
method under capacity constraints.
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3.6.1 Practical Considerations

While for simple problems, such as the one solved above, the solution ¢an
be easily automated, more complex situations may benefit from decision
support teols with substantial human intervention. The following two-step
human/machine procedure is recommended: (i) first, recognizing that its
recommendations may need fine-tuning adjustments, the CA (or other
simplified} method is applied to a basic version of the problem without
secondary details; (i) then, trained humans develop implementable solu-
tions that account for the details, perhaps atded by numerical methods that
can benefit from the output of the first step.

In some cases, when time is of the essence humans alone may have to
carry out this second step because efficient numerical metheds capturing
peculiar details may not be readily available, and developing themn may be
prohibitively time consuming. Furthermore, even without time pressurcs, if
the details are so complex (or so vaguely understood) that they cannot be
quantified propetly, pursuing automation for the fine-tuning step would
seem ill-advised. Fortunately, this is not a serious drawback; as argued ear-
lier, significant departures from ideal situations should not increase cost
significantly, leaving humans considerable latitude for accommodating de-
tails.

As an illustration of these concepts, problem 3.6 re-examines the termi-
nal location problem of Section 3.4. when only 50 specific locations are
feasible. The cost of the two-step procedure (fine-tuned by hand) is com-
pared to the ideal cost without restrictions, and (optionally) to the exact op-
timal cost obtained with dynamic programming. The reader will find that
the fine-tuning step often identifies the exact optimum, and when it does
not, the difference between the two-step and the exact optimal costs is
measured by a fraction of a percentage point. Furthermore, the two-step
and one-step (or ideal) costs are very close; of course, provided that n¥ is
not greater than 30.

3.7 Network Design issues

In all the scenarios discussed so far, the items followed a predetermined
path. Real logistics problems, however, often involve the choice of alterna-
tive routes (e.g., alternative ways of shipping) between origins and destina-
tions, in addition to the choice of when and how much to dispatch. In some
instances one may even be interested in whether certain routes should be
provided at all; or even in the design of an entirely new physical distribu-
tion network.
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We also found in Section 3.1 that there were economies of scale in flow;
Le., the optimal cost per item decreased with D'. Later in this monograph
we will have to consider logistics problems with multiple destinations,
where an item's route is not predetermined and cost decreases with flow.
We discuss here some key features of these problems, and conclude the
chapter with a comparison of detailed and non-detailed approaches for lo-
gistic system design.

3.7.1 The Effect of Flow Scale Economies on Route Choice

A simple example with one origin and two destinations (see F igure 3.8) ef-
fectively iliustrates the properties of optimal system designs with and
without flow economies of scale. The origin, O , produces items of typei (i
= 1, 2) for destination P; at a constant rate, given by the parenthetical num-
bers in the figure: D'y = D', = 4 items per unit time. The combined pro-
duction rate at the origin is D', + D', = 8§ items/unit time. The arrows in the
figure depict possible shipment trips; these transportation links are num-
bered 1, 2, 3. While all the items traveling to P, , must travel directly be-
tween O and P, , the items traveling to P, may go cither directly or via P; .

Let us assume that a fraction (to be decided) x , of the items for P are
sent via P; and the rest are shipped directly, This establishes a flow
x; = 4(1+x) on link 1 (OP,), 2 flow x; = 4x on link 3 (P1Py) and a flow x, =
4(1 - x) on link 2 (OP,).

We also assume that the total cost on the network can be expressed as a
sum of link costs, and that these depend only on their own flows. This is a
reasonable assumption if no attempt is made to coordinate the shipping
schedules on the three links, as then the prorated cost to cach
link should be close to the EOQ expression with demand rate equal to the
link flow. Thus, if we let z(x;) denote the cost per item on link | when the
flow is x;, the total system cost per unit time is:

With economies of scale, the functions xizi(X;) increase at a decreasing
rate (are concave) as in

Total cost = Z xz,(x,).
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P (4)

flow = X3
cost = Z3
cost zzz P2(4)

Fig. 3.8  Flows and costs for a simple 3-node network

With economies of scale, the functions xz(x;) increase at a decreasing rate

(are concave) as in Figure 3.2¢. Because the x;'s are linear in the split x ,

the total cost is a concave function of the split — this (concave) dependence

of cost on splits (decision variables) also holds for general networks.
Suppose, for example, that

[ V) ol
zy=x0 0, Z, = 3x

= b2 ISP 72 _
Xz = x5, Xz, =3x) " andx;zy = Xy,

and z, =1,

Then, as a function of x, (3.16) becomes:
Total cost = 2(1+x)"7 + 6 (1-x)"" + 4x. (3.17)

This relationship is plotted on Fig. 3.9; as stated, the total cost is a concave
function of the split, x . Like any concave function, it reaches a minimum
at one of the ends of the feasibility interval. For our data the optimal solu-
tion is x* = 1, indicating that everything should be shipped through P,.
The total cost is 6.8, Although shipping everything direct may be better for
different data, clearly one would never want to split the flow to P; among
the two routes (0P, and OP P2} .

A similar "all-or-nothing” principle holds for networks with multiple
origins and destinations if the total cost is a concave function of all the link
flows (Zangwill, 1968). In that case all the flow from any origin to any
destination should be allocated to only one route. This is not difficult to
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see: one can define a split between any two routes joining an origin and a
destination, and since the link flows are linear in that split, the total cost is
concave in the split; thus, only one of the routes can carry flow. Networks
with diseconomies of scale behave in an opposite manner. In that case the
total cost function is convex in the splits and there is an incentive o spread
out the flow among routes, In fact, if for a one origin and one destination
network, there exist several routes with identical cost functions (with dis-
economies); it is not difficult to prove that the total flow should be evenly
divided among a// the routes.

A

TOTAL COST

SPLIT, X

Fig. 3.9  Concave cost function in the split

Networks with flow economies of scale also respond in a different manner
to changes in conditions. While, with diseconomies, a small improvement
to one of the routes would lead to a small change in the optimal flow dis-
tribution {see exercise 3.8}, with economies, the optimal tlows either stay
the same or change by a discrete amount. This can be seen with the exam-
ple of (3.17). As long as z: <[2 - pa 2] = 1.3, x* equals 1, but if z: is in~
creased bevond this value ever so slightly, the solution jumps to x* = 0.
This is typical of concave cost problems: minor changes to the input data
can induce targe changes in the optimal solution. Fortunately, the cost does
not behave in such manner; despite the jump in our examplke the cost is a
continuous function of z3:
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Let us now turn our attention to solution methods.

3.7.2 Solution Methods

The nature of the solution is not the only difference between networks with
economies and diseconomies; the way to find it is also different. While
networks with diseconomies are well behaved optimization problems
without local minima that are not global, networks with economies are not.
The books by Steenbrink (1974), Neweil (1980), and Sheffi (1985) discuss
networks with scale diseconomies in detail; Popken {(1988) reviews the
sparser (traditional/detailed) network design literature for networks with
scale economies. Further information on this subject can be found in Ball
et al (1995 and 1995a).

Although local search algorithms can be used to find near optimal solu-
tions for large detailed networks with convex costs, the same procedures
fail with concave cost networks, The task is then much more complicated,
and the network sizes that can be handled by numerical methods much
smaller.

Except for technical details, all local search algorithms work in the same
manner. First, the total cost is evaluated for an initial feasible solution, de-
scribed by a set of variables that uniquely identify the decisions; e.g., the
set of splits for all origin destination pairs. A small cost-reducing perturba-
tion to the feasible solution (e.g., a differential change to the splits) is then
sought. If not found, the search stops because the initial solution is a local
minimum; i.e., a solution that cannot be improved without substantial
changes. Otherwise, an improved larger perturbation obtained from the
original small perturbations is identified, and then used to construct a new
improved feasible solution. The process is then iterated (seeking small
cost-reducing perturbations to the new solution, etc.) until no significant
improvements resuit.

Local search techniques work acceptably for networks with scale dis-
economies, because in those instances any local minimum is a global
mintmum. Unfortunately, this is not the case with economies of scale. Fig-
ure 3.9 reveals that our simple problem has two local minima: x = 0 and x
= 1. If a local search algorithm is applied to our example, any starting so-
Iution with x < (.61 (the maximum in the figure) will converge sub-
optimally to x =0 . While for our simple example this can be corrected
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simply by starting with different x's , the task is daunting for large, highly
detailed networks. In that case, the number of potential traps for a local
search — all local minima regardless of cost - increases exponentially with
the amount of detail.

This is illustrated with an example, where items from a large number N
of origins are shipped to one destination using two transportation modes (1
and 2). We use x; to denote the split of production from origin 1 sent on
mode 1, and assume that (to satisfy an agreement with the providers of
type-1 transportation) each x; must satisfy x; > h; for some constant hi > 0.
Transportation by mode 2 is assumed to be more attractive, but limited in
capacity; that is, the sum of the x;'s must exceed a value h.

For a set of splits to be feasible, thus, the following must be true:

N
> x, zhandh <x, <1,V (3.18a)
=i

We seek the set of feasible splits that minimize the total cost, or equiva-
lently the penalty paid because not all the items can be shipped by mode 2.
The penalty paid for each origin is assumed to increase with x; , except at
certain values where a fixed amount & is saved — perhaps because ship-
ments can then be multiples of a box, requiring less handling. To simplify
the exposition, let us assume that there is only one such value §; for every
origin, and that away from this value the penalty equals x;; otherwise the
penalty is x; - &. If we define &(x;) to be: & if x; = ; and 0 otherwise, then
ihe combined penalty for all the origins can be expressed as:

N

> [ -edx)] (3.18b)

=f

Note that each one of the terms in this summation for which &; > h; exhibits
two local minima in the range of feasibility [h,1): x; =hjand x; = &; .

Any combination of X's, each equaling either h; or & , and satisfying
(3.18a) is a local minimum, which could stop a search. If the §; and the h;
are uniformly distributed between 0 and 1, and h is small, there will be
O™ local optima. With so many traps, local search algorithms are
doomed to failure for this problem — not because (3.18b) is discontinuous,
but because it is not convex. A different method must be used.

Certainly, one could search exbaustively over all the possible solutions
with a combinatorial tool such as branch and bound, but these methods can
only handle problems of small size - typically with O(10%) decision vari-
ables or less.
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Alternatively, one could try to exploit the peculiar mathematical structure
of Egs. {3.18} - or whichever problem is at hand - to develop a suitable al-
gorithm. If successtul, the approach would find a solution with all its de-
tail. In our case, the optimization of (3.18) can be reduced to a knapsack
problem that can be solved easily (see exercise 3.8); in other instances if
may be possible to decompose the problem into a collection of small easy
problems. Very often, however, a simple solution method cannot be found.
In our case, this would happen if there were more than one (s, &) for each
origin. Traditionally one then turns to ad hoc intuitive solution methods
(known as heuristics) which one hopes will yield reasonable solutions.

There is also another approach. If while inspecting the formulation, or
even better in the process of formulating the problem, one realizes that cer-
tain details are of little importance one should leave them out. Our exam-
ple illustrates how removing minor details can turn a nightmare into an
easy problem. If the g's are so small that the g(x;) in (3.18b) can be ne-
glected, then the objective function reduces to I; x; . Former sources of dif-
ficulty, the &; and g no longer enter the formulation. With less detail, the
problem becomes well behaved {convex), and even admits a closed form
solution; e.g., if Z; h; = h then the optimal splits are x; = h; and the total cost
is E; h; =Nh .

Note that the optimal cost is given by an average (there is no need to
know precisely each individual h; in order to estimate the optimal cost),
and that the optimal solution can be described with the simple rule "make
every split as small as possible", which can be stated without making ref-
erence to the hy's.
~:In the rest of this monograph we will seek solutions to logistic problems
using as little detail as possible, describing (as in the example) the solution
in terms of guidelines which are developed based on broad averages in-
stead of detailed data. We recognize that the solutions obtained from such
guidelines may benefit from fine-tuning once detailed data become avail-

will increase the effort for gathering data, and, as illustrated, may even get
in the way of obtaining a good solution.

- Observation of mother nature's logistics networks suggests that many
logistics systems can be designed in this manner. Trees can be viewed as a

gion (the leaves) to meet the sun's rays. While every individual tree of a

a:species share many common characteristics on average. There is order at

.the macroscopic level. This is not surprising, since members of the species

have adapted to similar environmental conditions, also filling the same

““niche in the eco-system. The detailed characteristics of an individual tree
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are (like our logistic systems) developed from two levels of data in two
different ways:

(i) Members of the same species share a genetic code, which has
evolved in response to the typical or average conditions that can be
expected. This code is analogous to the guidelines of a simple
modei; e.g., "make each split as small as possible.”

(ii}In response to the detailed conditions of its location, a tree develops
an individuality within the guidelines of the genetic code, better to
exploit the local conditions. This would be analogous to the fine tun-
ing that could have taken place if the ¢, h;, and §; had been given in
our example.

The same could be said for other logistic systems encountered in nature,
such as the circulating and nervous systems of the human body.

On further inspection we notice that, not only average characteristics,
but some specific traits are also the same for all individuals, (e.g., some
tree species have always one trunk, all humans have one aorta artery, etc.).
It is as if nature had decided that these items of commonality are optimal
for almost any conditions that can be encountered; therefore, that part of
the design is not open to fine tuning. Perhaps the same can be said of logis-
tics systems.

The logistics systems of nature also have economies of scale. It takes
less energy to move a certain flow through one single pipe than through
two pipes with one-half the cross section. As in our networks with concave
costs, there is an incentive to consolidate flow into single routes that can
handle great volumes efficiently. Nature has responded to this challenge by
evolving hicrarchical systems of conveyance, such as the three hierarchy
network of Fig. 3.10.

Scientists have begun to realize that apparently very complex ("fractal”)
structures, such as a fem leaf, can be replicated and/or described with just
a few rules and parameters (Gleick, 1988, provides an entertaining descrip-
tion of these ideas). For the example of Fig. 3.10 the separations between
"nodes" (e.g., Ay and A,) for each hierarchy might be found to be rela-
tively constant, perhaps varying with the distance from the root, as might
be the number of branches at every node and the relative size of the main
and secondary branches at nodes of the same hierarchy. The latter may
also vary with the distance from the "root.”

A physical distribution network should probably be organized in a simi-
lar way with the root becoming the depot, the leaves the customers, and the
nodes intermediate transshipment centers or terminals. Physical distribu-
tion networks that serve similar purposes, just as in nature, should likely
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share the same hierarchical organization and overall traits even if the spe-
cific details differ. As in nature, it should be possible to describe their near
optimal configuration with just a few simple rules and parameters (see
problem 3.11).

In this spirit, the chapters that follow will try to get at the "genetic code”
of logistics systems; ie., describe how genera! classes of logistics net-
works should be organized, with guidelines for obtaining an optimal struc-
ture developed without using detailed data. Building on the simple EOQ
model, we gradually consider more complex systems.

Chapter 4 describes problems with a single hierarchy consisting of one
origin and many destinations (or the reverse); i.e., "one-to-many” prob-
lems. Chapter 5 describes "one-to-many” problems with transshipments
(multiple hierarchies), and Chapter 6 concludes with "many-to-many"
problems.

LEAVES
(CUSTOMERS)

ROOT
(DEPOT)

Fig. 3.10  Schematic representation of naturaliy occurring logistics systems




