

The source of Groundwater

Basics of Groundwater Flow

Groundwater is water located beneath the earth's surface in soil pore spaces and in the fractures of rock formations

Groundwater formations (Aquifers)

Aquifer types:

- Confined aquifer
- Unconfined aquifer

Groundwater Discharge

The discharge of groundwater (Q) in m³/day is evaluated by Darcy's Law:

$$Q = AV$$

= $A. K I$

The discharge of groundwater per 1m width of water-bearing layer (q) in m³/day is:

$$A = h*1m=h$$

 $q = K h I = K*h*-\Delta H/\Delta L$

K: permeabiltiy coefficient (m/day)

h: thickness of water-bearing layer (m)

I: groundwater surface gradient

Groundwater Discharge

The discharge from unconfined aquifer:

$$Q = A*K*I = 2 \prod r*h*(K)*\Delta h/\Delta r$$

Groundwater Basics

- ► Infiltration: movement of water into soil from matric and gravity forces
- ▶ Percolation: movement due to gravity alone
- ▶ Porosity: total void space in rock or soil as volume

Porosity = 100*Vv/Vt

- 10% for glacial till
- 20-50% for sands and gravels
- 33-60% for clays
- ▶ Permeability: the ability of water to flow through a soil

Assessing Groundwater Vulnerability

There are three traditional methods for assessing groundwater vulnerability to pollution:

- Process-based: Involves numerical modeling and is useful at the local level but not the regional level
- Statistical: Involves correlating actual water quality data to spatial variables and requires a large amount of site specific data
- Overlay and Index: Involves obtaining and combining maps of the parameters that affect the transport of contaminants from the surface to groundwater, then assigning an index value to those parameters; the results are a spatially oriented vulnerability index

The DRASTIC Method: An Overlay and Index Method

- Developed by US EPA
- Provides a basis for evaluating the vulnerability to pollution of groundwater resources based on hydrogeologic parameters.

- Provides an approach to evaluate an area based on known conditions without the need for extensive, site specific pollution data.
- Provides an inexpensive method to identify areas that need more investigation.

Key Assumptions Made

- Contamination occurs at the ground surface.
 The contaminant enters the water table and
- 2) The contaminant enters the water table when rain falls on the surface and percolates into the saturated zone.
- 3) The contaminant travels with water, at the same rate as water.
- 4) The method will be applied to no greater than 100 acres.
- 5) The aquifer is unconfined (the method can be modified for a confined aquifer).
- 6) The dominant pollutants are not pesticides (the method can be modified to include pesticides).

The Drastic Method: Parameters Used in the Index

- D: Depth to Groundwater
 The depth from the ground surface to the water table in unconfined aquifer and to the bottom of the confining layer in confined aquifer
- R: Net Recharge
 The total quantity of water which is applied to the ground surface and infiltrates to reach the aquifer
- A: Aquifer Media
 Consolidated or unconsolidated rock which serves as an aquifer (such as sand, gravel, and limestone)
- S: Soil Media
 The uppermost portion of the vadose zone characterized by significant biological activity
- T: General Topography or Slope
 The slope and slope variability of the land surface
- **I:** Vadose Zone The zone above the water table which is unsaturated or discontinuously saturated
- **C:** Hydraulic Conductivity of the Aquifer: The ability of the aquifer materials to transmit water

Governing Equation

Each parameter is assigned a rate and a weight.

DRASTIC Index =
$$D_r \times D_w + R_r \times R_w +$$

$$A_r \times A_w + S_r \times S_w +$$

$$T_r \times T_w + I_r \times I_w + C_r \times C_w$$

r = the rating for the parameterw = an assigned weight for the parameter

The Drastic Method: Governing Equation

Assigning a Rate

Each of the parameters in the model is grouped into ranges of values or broad categories that are assigned a rate from 1-10.

Topography (Percent Slope)		
Range	Rating	
0-2	10	
2-6	9	
6-12	5	
12-18	3	
18+	1	

Highly Varied Topography at Wadi Rum

The Drastic Method: Governing Equation

Assigning a Rate

Impact of the Vadose Zone Media Media Type Rating Confining Layer Silt/Clay 3 Shale Limestone 6 Sandstone Bedded Limestone/Sandstone/Shale 6 Sand & Gravel with Clay/Silt 6 Metamorphic/Igneous 4 8 Sand and Gravel 9 Basalt Karst Limestone 10

Karst Limestone at Ajloun Forest Reserve

The Drastic Method: Governing Equation

Assigning a Weight

Weights are fixed in the methodology.

Parameter	Weight
Depth to Water	5
Net Recharge	4
Aquifer Media	3
Soil Media	2
Topography	1
Impact of the Vadose Zone Media	5
Hydraulic Conductivity of the Aquifer	3

So the governing equation becomes:

DRASTIC Index = 5Dr + 4Rr + 3Ar + 2Sr + Tr + 5Ir + 3Cr

Geographic information system (GIS)

- GIS is a system of hardware and software used for storage, retrieval, mapping, and analysis of geographic data.
- Spatial features are stored in a coordinate system (latitude/longitude, state plane, UTM, etc.), which references a particular place on the earth.
- Descriptive attributes in tabular form are associated with spatial features. Spatial data and associated attributes in the same coordinate system can then be layered together for mapping and analysis.
- GIS can be used for scientific investigations, resource management, and development planning.

GIS Models

- Most GIS use one of two basic spatial data models to represent the real world, namely the Vector model and the Raster model.
- In the vector model, objects or conditions in the real world are represented by the **points** and **lines** that define their boundaries.

GIS Models

Raster data models represent geographical space by dividing it in a series of units, each of which is limited and defined by an equal amount of earth's surface. The matrix of cells, organized into rows and columns is called a grid

Applications of GIS

Delineation of Watershed.

Watersheds is: "The region draining into a river, river system, or body of water." Watersheds are always physically delineated by the area upstream from a given outlet point.

You must start with a surface, digital elevation model (DEM), that has no sinks.

Delineation of Watershed

DRASTIC method

• Applying the DRASTIC method to monitor the pollution of ground water.

Study Areas and Results

• The Dead Sea

"Groundwater vulnerability assessment and evaluation of human activity impact (HAI) within the Dead Sea groundwater basin, Jordan"

Ahmad Al-Hanbali and Akihiko Kondoh

Jerash

"GIS based Hydrogeological Vulnerability Mapping of Groundwater Resources in Jerash Area – Jordan"

Nezar Hammouri and Ali El-Naqa

Russeifa

"GIS-based evaluation of groundwater vulnerability in the Russeifa area, Jordan"

Ali El-Naqa, Nezar Hammouri, and Mustafa Kuisi

Location of the Study Area within Jordan

Covers 4,483 square kilometers (1,731 square miles)

- Climate is arid to semiarid
- Average rainfall of 335 mm/year (13.2 in/year)
- Western portion receives75 mm/year (3.0 in/year)
- Seattle, WA receives an average rainfall of 940 mm/year (37 in/year)
- Boise, ID receives an average rainfall of 310 mm/year (12.2 in/year)

Topography and Drainage System of the Study Area

Average slope in the study area is 5.5% but ranges from 0% to 57.5%

There are three major aquifers in the study area

The study area is characterized by numerous faults, where it is assumed precipitation infiltrates directly into the groundwater

Soil and Aquifer Media in the Study Area

Application of the DRASTIC Index

- Data was obtained for each parameter in the study area, which was then divided into sub-regions by value or category
- Each of these sub-regions were then assigned a rate in the index
- Special consideration was given to determining the recharge value, due to the predominance of faults in the area
 - Recharge value was calculated using a combination of ratings for rainfall, slope, soil permeability and the average distance between the fault and drainage systems

Application of the DRASTIC Index

To evaluate the impact of humans, six land use classes, LU, and their corresponding rates were assigned to the study area.

Land Use	Rating
Urban	8
Agriculture	8
Natural Vegetation	2
Water	3
Evaporation Pond	7
Bare Land	1

Human Activity Impact (HAI) Index = 5D + 4R + 3A + 2S + T + 5I + 3C +5LU

Study Areas: Dead Sea Jerash Russeifa

Analysis and Results

The resulting index scores were divided into five range values of groundwater vulnerability: very low, low, moderate, high, and very high.

Human Activity Impact Index			
Vulnerability	Area (km²)	Area (%)	
Very Low	157.3	3.8	
Low	953.7	22.8	
Moderate	2,409.8	57.6	
High	647.7	15.5	
Very high	16.6	0.4	

- Along Jerash watershed, there are 7 wells and 6 springs issued from this aquifer.
- The total recharge to this aquifer is about 4.5 million cubic meters.
- The specific capacity of the aquifer ranges from 0.01 to 12 m3/hr with a transmissivity ranging between 0.3 and 100 m²/d and the hydraulic conductivity varying from 0.003 to 2.7 m/d

 Wastewater and agricultural practices are the dominant source of contamination in the watershed.

Feb-99

May-02

high nitrate concentration are correlated with high vulnerability areas in both models.

Location of the Study Area within Jordan

Study Areas: Dead Sea Jerash Russeifa

Objectives

- The ultimate goal of vulnerability maps is the subdivision of the area into several hydrogeological units with different levels of vulnerability
- To assess the vulnerability of groundwater to contamination in the vicinity of the solid waste disposal site at Russeifa area by combining the DRASTIC model with GIS

Vulnerability Mapping Model

Combination of DRASTIC model and GIS were used to produce the vulnearability map for groundwater contamination around Russeifa landfill and this involves:

- 1. Collecting hydrogeological and geological data
- 2. Standardizing and digitizing source data
- 3. Constructing an environmental database
- 4. Analyzing the DRASTIC factors
- 5. Calculating the DRASTIC index for the hydrogeological settings
- 6. Rating these areas as to their vulnerability to contamination

Results

The grid layer for depth to water was generated by computer subtraction of water-level elevation data sets from land surface elevation, The depth to water table is in the range from 30 m to 60 m from the ground surface

Results

The grid layer for the topography of the landfill was generated from a DEM, to calculate percent slopes. Most of the slopes in this study were in the range of 2 to 12 percent.

Results

This map shows moderate to high vulnerability (101–200), with the most vulnerable areas to groundwater contamination –indicated by the highest DRASTIC indexes– located close to the landfill area

Study Conclusion

The vulnerability index of Russeifa area indicates that groundwater resources in the surrounding area are susceptible to pollution to a moderate degree by the Russeifa landfill

The vulnerability map has a range from the most vulnerable for contamination to the least vulnerable

Shukran

