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Abstract

Hyperspectral remotely sensed data are useful for studying ecosystem processes and patterns. However, spatial characterization of such

remotely sensed images is needed to optimize sampling procedures and address scaling issues. We have investigated spatial scaling in

ground-based and airborne hyperspectral data for canopy- to watershed-level ecosystem studies of southern California chaparral and

grassland vegetation. Three optical reflectance indices, namely, Normalized Difference Vegetation Index (NDVI), Water Band Index (WBI)

and Photochemical Reflectance Index (PRI) were used as indicators of biomass, plant water content and photosynthetic activity, respectively.

Two geostatistical procedures, the semivariogram and local variance, were used for the spatial scaling analysis of these indices. The results

indicate that a pixel size of 6 m or less would be optimal for studying functional properties of southern California grassland and chaparral

ecosystems using hyperspectral remote sensing. These results provide a guide for selecting the spatial resolution of future airborne and

satellite-based hyperspectral sensors.

D 2002 Elsevier Science Inc. All rights reserved.

1. Introduction

Spatial heterogeneity is inherent in natural vegetation.

Key vegetation physiological and physical processes occur

over a wide range of spatial scales, ranging from individ-

ual molecules to leaves, canopy, local and global scales.

The relationships of these physical and physiological

processes are often nonlinear (Hari et al., 1984; Lappi &

Smolander, 1984), and extraction of ecologically mean-

ingful information may depend on the spatial scale at

which data are collected (Jarvis & McNaughton, 1986).

Earth scientists are constrained by the predetermined

spatial resolution (i.e., the pixel size) of the satellite

imagery when using satellite-based remotely sensed data.

For the last couple of decades, ecologists and earth

scientists have used Landsat images at 30-m pixel size,

or NOAA-AVHRR images at 1.1-km pixel size, to derive

information that may have spatial variance smaller than

those pixels. Spectral mixture modeling and other techni-

ques have been applied to derive sub-pixel information

hidden in a larger pixel (Roberts, Green, & Adams, 1997;

Ustin et al., 1998). As environmental remote sensing

matures, ecologists and Earth scientists need to specify

the proper spatial scale and pixel sizes needed for studying

different aspects of ecosystems, so that engineers can

develop the corresponding space- or aircraft-based systems

suited for those purposes.

Spectral information of vegetated surfaces contained

in a pixel of remotely sensed data varies with sensor

geometry and platform height (Curran & Guyot, 1997).

Depending on the field of view (FOV) of the sensor, a

handheld spectrometer at 1 m above a canopy generally

‘sees’ a couple of square centimeters to a square meter

area as its pixel size. Airborne sensors (e.g. Airborne

Visible Infrared Imaging Spectrometer or AVIRIS, Green

et al., 1998) and spaceborne sensors (e.g. Moderate

Resolution Imaging Spectrometer, or MODIS) generally

have pixel sizes ranging from tens of meters to kilometers.

Therefore, reflectance recorded from a handheld spectro-

metric pixel, with an area of a few square centimeters

from a natural area would not be directly comparable to

an image pixel with an area ranging from a few square

meters to couple of square kilometers collected from the

same general area using AVIRIS or MODIS. To compare

handheld spectral data to aerial and satellite imagery, or
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to use satellite imagery for deriving surface processes at

smaller spatial resolutions, the issue of spatial scaling has

to be addressed.

As defined by Jarvis (1995), the scaling process involves

‘‘taking information at one scale and using it to derive

processes at another scale.’’ Upscaling is the process of

taking information at smaller spatial resolutions (such as

handheld spectrometric data) and deriving information at

larger spatial resolutions (such as AVIRIS or MODIS

pixels). Downscaling involves the decomposition of data

collected at larger spatial resolutions into information at

smaller spatial resolutions.

As part of a larger study of multi-scale ecosystem

function in chaparral and grassland of the Santa Monica

Mountains region in southern California, we have been

examining the suitability of different hyperspectral sensors

and platforms. Previous studies have shown that hyper-

spectral remote sensing can potentially increase the accu-

racy of ecosystem process models by providing model

inputs based on fundamental biophysical properties linked

to physiological function (Gamon & Qiu 1999; Roberts et

al., 1997; Ustin et al., 1998). Water and pigment absorption

features in vegetation are two physiologically relevant

signals that are detectable based on reflectance features

present in hyperspectral data (Fillela, Amaro, & Peñuelas,

1996; Gamon et al., 1998; Peñuelas, Filella, Biel, Serrano,

& Save, 1993; Peñuelas, Filella, & Gamon, 1995; Peñuelas,

Pinol, Ogaya, & Filella, 1997). Green biomass and green

leaf area index are linked to vegetation indices calculated

from reflectance at visible and near infrared regions

(Gamon, Green, Roberts, & Serrano, 1995; Goward &

Huemmrich, 1992).

The objective of this paper is to examine the spatial

characteristics of hyperspectral signatures from chaparral

and grassland vegetation in southern California to deter-

mine an optimum pixel size for landscape level ecosystem

studies. Biomass, photosynthetic activity and vegetation

water content are used in this study as indicators of

ecosystem function that could be estimated using hyper-

spectral remote sensing. A proper understanding of spatial

dependence of these variables is essential to avoid the

potential errors arising from heterogeneity and patchiness

in upscaling or downscaling physiological processes. We

adopt the geostatistical methods of semivariogram analysis

and local variance analysis with ground-based hyperspec-

tral data and AVIRIS imagery for this purpose.

2. Relevance of geostatistics

2.1. Spectral reflectance and semivariograms

Surface reflectance in a given spectral waveband is a

spatially continuous variable at the pixel size of a given

sensor. In geostatistics, such an attribute with spatial

continuity is called a regionalized variable (Matheron,

1971). The second-order spatial characteristics of a

regionalized variable are modeled in geostatistics by

the semivariogram (Cohen, Spies, & Bradshaw, 1990;

Curran, 1988; McBratney & Webster, 1986). One objec-

tive of this study is to investigate the spatial variances

of hyperspectral reflectance products with semivario-

grams.

To relate semivariogram analysis to the sampling me-

thod used in this study, we can imagine a transect running

across an area, where the surface reflectance values have

been collected at pixels in regular intervals (Fig. 1A). The

spatial variance between reflectance values of any two

distinct pixels would depend on their separation distance

h (called ‘‘lag’’). The semivariance, c(h), of reflectance

values between any two pixels at a lag of h can be ex-

pressed as:

cðhÞ ¼ 1

2
½zðxÞ � zðxþ hÞ�2 ð1Þ

where z(x) is the reflectance value at a pixel with coor-

dinate vector (x). For simplicity we denote x as a scalar.

There will be n(h) pairs of observations within the transect

Fig. 1. (A) A schematic diagram of semivariance between different lags

along a transect of data points. Lags of 1 and 2 pixels are shown along with

the formulation of semivariance for any lag h. (B) A spherical semivario-

gram showing range (a), sill (c) and nugget (c0). The dots represent

experimental data and the solid line represents the model fit.
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separated by a particular lag h. Their semivariance is given

by:

CðhÞ ¼ 1

2n

Xn
i¼1

½zðxiÞ � zðxi þ hÞ�2 ð2Þ

Here, C(h) is an unbiased estimate of the population

variance, and is a useful measure of dissimilarity between

spatially distributed regionalized variables. The larger C(h),
the less similar the pixels. The relationship between semi-

variance (C) and different lag vectors h provides a semi-

variogram for the population.

When a semivariogram is plotted using discrete exper-

imental data points, it is called an experimental or sample

semivariogram. However, to quantify spatial patterns, or to

optimize sampling, it is necessary to fit a theoretical model

through the experimental data points. Three key model

terms are: (1) sill, (2) range and (3) nugget variance (Fig.

1B). The sill is the theoretical maximum variance of the

semivariogram and as such represents the inherent variance

of the regionalized attribute. The range is the lag of semi-

variogram at which the sill is attained and marks the limit of

spatial dependence of that attribute. The nugget variance is

the positive intercept of the semivariogram and can be

caused by measurement errors or unexplained sub-pixel

variance present in the data.

For this research, we applied one semivariogram model

commonly used for natural system studies (McBratney &

Webster, 1981; Webster & Nortcliff, 1984). It is called the

spherical model, and is expressed as:

CðhÞ ¼ c0 when h¼ e ða very small lagÞ

CðhÞ ¼ c0 þ c
3h

2a
� h3

2a3

� �
when 0 < hVa

CðhÞ ¼ c0 þ c when h > a

8>>>><
>>>>:

ð3Þ

where c0 is the nugget variance, c is the sill, h is the lag and

a is the range. The gradient of the spherical function is 3c/2a

till it reaches the sill. It becomes zero at sill and the function

becomes a straight line (Fig. 1B). The sill of the semivario-

gram corresponds to the estimate of true variance of the

data. The corresponding range denotes the distance at which

the samples become spatially uncorrelated.

The most important factor for this study was the range of

the semivariogram, which would indicate the size of objects

in the landscape. According to sampling theorems, to

effectively sample objects, one must sample at least at

one-half the width of the object (McGrew & Monroe,

2000). Therefore, for remote sensing purposes, a spatial

resolution element (or pixel) smaller than or equal to half the

semivariogram range would be an appropriate one to study

the spatially distributed characteristics of that surface. This

would define the distance above which spatial resolution

elements are not related (Curran, 1988). For example, for a

vegetated landscape, this might be related to functionally

distinct species or vegetation types, or the difference

between vegetation and bare ground. To capture the distinct

functional properties of components in such a landscape, it

is then advisable to choose a pixel size that is smaller than or

equal to half the range of the semivariogram.

2.2. Fitting semivariogram models

Model fitting is one of the basic problems in using

semivariograms for spatial studies. Deriving the appropriate

sill, range and nugget from the discrete experimental data is

essential for fitting the continuous semivariogram model.

Methods of model fitting range in practice from simple

visual fitting to complex mathematical algorithms. Even

though the visual fitting is practiced in many cases, it is not

advisable because it does not have any theoretical basis and

one person’s visual fit may not be same as another person’s

(McBratney & Webster, 1981).

Most of the mathematical model-fitting techniques work

well, but they involve complex algorithms. Recently, Chen

and Jiao (2000) have introduced a method of estimating the

parameters of six different semivariogram models by simple

linear programming techniques. They used the theory of

nonnegative solution of linear equations for this purpose.

Since our paper uses only the spherical model, we briefly

discuss here how the parameters of a spherical model can be

derived using a linear solution.

According to the model described in Eq. (3), when h = e
or h>a, C(h) is equal to c0 and (c0 + c), respectively. There-

fore, a solution of C(h) when e < hV a would solve the

problem. When e < hV a, Eq. (3) can be written as:

CðhÞ ¼ c0 þ
3c

2a

� �
hþ �c

2a3

� 	
h3 ð4Þ

Replacing b, x2, x3, a1, a2 and a3 for C(h), 3c/2a, � c/2a3,

c0, h and h
3, respectively, and defining a new variable x1 = 1,

we get the following linear equation:

b ¼ a1x1 þ a2x2 þ a3x3 ð5Þ

Let h1, h2,. . .hn denote n(h) observations of lag distance hi,

and C(hi) denote the experimental semivariogram value at

lag hi (i = 1, 2,. . .n). Using the spherical model of exper-

imental semivariogram expressed in Eq. (4), we can sub-

stitute the experimental values into the transformed linear

Eq. (5) as follows:

a11x1 þ a12x2 þ a13x3 ¼ b1 when lag ¼ h1

a21x1 þ a22x2 þ a23x3 ¼ b2 when lag ¼ h2

. . . . . .

an1x1 þ an2x2 þ an3x3 ¼ bn when Lag ¼ hn

ð6Þ
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where (b1, b2,. . .bn) are all greater than zero. Eq. (6) can be

written in matrix form as:

Ax ¼ b ð7Þ

where:

A ¼

a11 a12 a13

a21 a22 a23

. . .

an1 an2 an3

2
666666664

3
777777775
; x ¼

x1

x2

x3

2
66664

3
77775; b ¼

b1

b2

. . .

bn

2
666666664

3
777777775

ð8Þ

To find a nonnegative solution of Eq. (6) (to ensure a

nonnegative variance), the constraint xz Q has to be con-

sidered, where Q is a vector of which all components are

zero. Using an objective function for x that includes this

constraint, and minimizing the function through linear

programming techniques with the experimental semivar-

iance data for hi, would produce a new vector:

x0 ¼ ½x01; x02; x03�
T ð9Þ

which is the solution of the linear Eq. (6). The superscript T

in Eq. (9) stands for transpose. The model parameters a and

c can be determined from this solution and the fitted semi-

variogram can be plotted using these parameters. Chen and

Jiao (2000) have provided a detailed discussion of the

procedure and also the required computer code for the

numerical solution. For our study, we used this linear

method to determine the sill and range parameters to fit

the desired spherical semivariograms.

3. Data collection and processing

3.1. Sampling methods

This study was conducted in selected chaparral and

grassland vegetation sites in the Santa Monica Mountains

region of southern California (Fig. 2). Data were collected

during the Fall seasons of 1998 and 1999 and the Spring of

2000, using a combination of field sampling and AVIRIS

imagery (Table 1). Our intention was to obtain field- and

aircraft-based hyperspectral data in different seasons when

water availability and physiological activity of the vegeta-

tion varies greatly. Due to the Mediterranean climate, Fall is

the dry season in southern California and greening occurs in

winter and Spring following winter rains. Chaparral sites

were also selected based on fire history and included

locations that had burned 1, 3, 21 and over 40 years ago.

These age classes corresponded to striking differences in

cover and vegetation structure resulting from post-fire

succession. Since most southern California grassland spe-

cies are annuals, this vegetation type undergoes less struc-

tural change than chaparral over comparable time periods.

Hence, only two grassland sites were selected for this study:

one in the Fall of 1998, and another during the Fall of 1999

and the Spring of 2000. These grassland sites were located

near each other in a locality named Rancho Sierra Vista. The

grassland site selected for study in 1998 had been burned 5

years earlier, and the other site had been burned 6 months

prior to measurement.

Field sampling was conducted along the selected trans-

ects in each test site with a field spectrometer (UniSpec, PP

Systems, Haverhill, MA) fitted with a straight fiber fore-

optic. The end of this fiber optic, which was positioned 3 m

above the ground, yielded a field-of-view of approximately

20j, resulting in a ‘‘pixel size’’ of approximately 1 m on the

ground. This spectrometer collects data at wavelengths from

300 to 1100 nm at approximately 3-nm intervals and in band

widths (full width at half maximum) of 10 nm, with a

controllable scanning time to allow optimal exposure based

on incoming light level. It has 256 spectral bands and the

data were saved in digital format for subsequent processing.

By scanning at 1-m intervals while walking along pre-

marked 100-m transects at each site, we obtained 100

ground spectra of approximately 1-m-diameter contiguous

pixels. Sunny days were chosen for field trips and data

collection time was bracketed between 2 h before to 2 h

after solar noon. Each transect was completed within half an

hour to ensure that the solar zenith did not change signifi-

cantly from beginning to end of the transect.

A 99% reflective white reference (Spectralon, Labsphere,

North Sutton, NH) was placed on a level tripod in an open

sunny area near the transects. Before every 20–25 ground

measurements, we scanned the reference with the spectrom-

eter to collect the reference radiance (i.e., solar irradiance).

Dividing the spectral radiance of the target by the reference

radiance produced the surface reflectance. We also used a

linear interpolation technique to interpolate the original 3-

nm spectrometric data to an interval of 1 nm. Since the

digital signals prior to 400 nm and after 1000 nm were

noisy, our final surface reflectance data consisted of 400–

1000 nm, at an interval of 1 nm, i.e., a total of 601 spectral

bands.

In the Fall of 1998, hyperspectral data were collected

from one chaparral transect and one grassland transect at the

Rancho Sierra Vista site simultaneously with a low-altitude

AVIRIS flight (on 5 October) covering the same area. Low-

altitude AVIRIS flies at approximately 5000 m above the

ground and yields a pixel size of approximately 4 m. We

corrected the AVIRIS image for atmospheric scattering and

absorption using the atmospheric correction program

ATREM (Reference: University of Colorado, Boulder,

web page: http://cires.colorado.edu/cses/atrem.html) and

cut a 400� 250-pixel subset (or 1.6 km� 1.0 km) of it

covering the study region. This subset image was then

georeferenced for the study purpose.

Field sampling was conducted at 10 other widely dis-

tributed chaparral sites and one grassland site (near Rancho
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Sierra Vista) during the Fall of 1999 and the Spring of 2000.

No simultaneous AVIRIS data were available for compar-

ison with the field data from 1999 and 2000. Chaparral sites

were mostly dominated by buckbrush. Other common

species included chamise, wild buckwheat and laurel sumac,

along with occasional patches of annuals or bare ground.

The grasslands were dominated by rye grass with a mix of

wild oats and wild radish. Soil background was covered by

annual vegetation in the grassland sites (Table 2). During the

Fall of 1998 and 1999, the grasslands were mostly brown

Fig. 2. A map of the study sites in the Santa Monica Mountain region of southern California. The seven areas for chaparral are shown, which contained the 10

transects. The Rancho Sierra Vista site contained the two grassland transects.

Table 1

List of all ground-based data sets used in this study

Date of data collection Age Vegetation

Fall 1998

10/5 23 years chaparral

10/5 1 year (senescing) grassland

Fall 1999

11/22, 11/24 1 year chaparral

11/23, 12/10, 12/16 3 years chaparral

12/10, 12/15, 12/16 21 years chaparral

12/15, 12/16 >40 years chaparral

12/03, 12/08 1 year (senescing) grassland

Spring 2000

04/24, 04/26 1 year chaparral

04/10, 04/12, 06/20 3 years chaparral

04/10, 04/12, 06/20 21 years chaparral

04/24, 06/20 >40 years chaparral

04/04, 04/11 1 year (green) grassland

The accompanying AVIRIS image was available only for the fall of 1998

data sets.

Table 2

List of the plant scientific names present in the transects used in this study

in alphabetic order

Scientific name Common name

Adenostoma fasciculatum chamise

Artemesia californica coastal sagebrush

Avena fatua wild oats

Bomus diandrus ripgut brome

Brassica nigra black mustard

Ceanothus cuneatus sedge-leaf buckbrush

Ceanothus megacarpus big-pod buckbrush

Convulvulus arvensis field bindweed

Eriogonum fasciculatum california wild buckwheat

Lolium muliflorum rye grass

Lotus scoparius western bird’s-foot-trefoil

Lupinus truncates collared annual lupine

Malacothamnus fasciculatus mendocino bush-mallow

Malosma laurina laurel sumac

Phacelia cicutaria caterpillar scorpion-weed

Raphanus raphanistrum wild radish

Salvia mellifera black sage
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with some green patches, and the chaparral species were

green but stressed following summer drought. In the Spring

of 2000, grassland and chaparral species were lush green.

All of our transects were selected so that they were at a

similar climatic region and at a similar distance from the

Pacific Ocean (Fig. 2). No specific geographic direction

(north–south, or east–west, etc.) was followed in setting up

the transects. Aspects of the transects ranged from south to

west, elevation ranged from 700 to 2000 m, and distances

from the coast were 8–16 km. The sites were selected to be

as similar to each other as possible except for stand age.

This way we could ignore the directional bias and render an

isotropic characteristic to our transect data. All transects

were 100 m long and were relatively accessible from roads

or trails.

3.2. Hyperspectral indices NDVI, PRI and WBI

The Normalized Difference Vegetation Index (NDVI) is

an expression of contrasting reflectance between red and

near-infrared regions of a surface spectrum (Rouse, Haas,

Schell, Deering, & Harlan, 1974). This expression is a

readily usable value that can be directly related to green

vegetation cover or measure of vegetation abundance, and is

expressed as:

NDVI ¼ RNIR � RRED

RNIR þ RRED

ð10Þ

where RNIR is near-infrared (NIR) reflectance, and RRED is

the red reflectance.

This index is sensitive to the presence of green vegeta-

tion (Sellers, 1985), and has been found well correlated with

biomass and green leaf area index in chaparral and grassland

of California (Gamon et al., 1995). It has been used for

numerous regional and global applications for studying the

distribution and potential photosynthetic activity of vegeta-

tion (Deblonde & Cihlar, 1993; Myneni, Los, & Asrar,

1995; Prince & Tucker, 1986; Townshend & Justice, 1986;

Tucker, Fung, Keeling, & Gammon, 1986, among others).

Since the formulation of NDVI permits a normalization of

red/NIR ratio, it acts as a robust descriptor of green

vegetation in spite of varying atmospheric effects in the

red and NIR bands (Fraser & Kaufman, 1985; Holben,

Kaufman, & Kendall, 1990; Kaufman, 1984). We used

reflectance values at a wavelength of 680 nm as red and

800 nm as NIR (Fig. 3).

Hyperspectral reflectance can also be used to monitor the

activity of xanthophyll cycle pigments (Gamon et al., 1990).

One spectral index used for this purpose is the Photo-

chemical Reflectance Index (PRI), expressed as:

PRI ¼ R531 � RREF

R531 þ RREF

ð11Þ

where R531 represents reflectance at 531 nm (the xantho-

phyll cycle wavelength) and RREF indicates reflectance at a

reference wavelength (Gamon, Serrano, & Surfus, 1997;

Peñuelas et al., 1995). The reference wavelength used for

the present study was 570 nm (Fig. 3). Previous studies have

shown that the use of 570 nm as the reference wavelength

reduces the effect of changes in reflectance produced by

chloroplasts (Méthy, 2000; Peñuelas et al., 1995). Since

xanthophyll cycle pigments regulate photosynthetic light

use (Demmig-Adams & Adams, 1996; Pfündel & Bilger,

1994), and interconversions of these pigments are detectable

with spectral reflectance (Gamon et al., 1990), PRI provides

a measure of radiation use efficiency of vegetation (Fillela et

al., 1996; Gamon, Peñuelas, & Field, 1992; Gamon et al.,

1997; Peñuelas et al., 1995; Rahman, Gamon, Fuentes,

Roberts, & Prentiss, 2001).

At 970 nm, there is a trough in the reflectance spectrum

of green vegetation due to water absorption. This trough

tends to disappear from the reflectance spectra of water-

stressed vegetation as canopy water content declines

(Peñuelas et al., 1997). A canopy water status index (termed

Water Band Index, or WBI) has been defined as a ratio of

reflectance at 970 nm and at a reference reflectance, such as

900 nm, and is defined as:

WBI ¼ R970

R900

ð12Þ

where R is the reflectance (Fig. 3). The reflectance at 900

nm is used as reference because there is no absorption by

water at this wavelength, but it is subjected to the same

changes in structure as the reflectance at 970 nm. This water

index has been found to be highly correlated with plant

water content in several species of trees, shrubs, crops and

grasses (Peñuelas et al., 1997).

3.3. Spatial analysis

For all three seasons, NDVI, PRI and WBI of each

transect point were calculated using Eqs. (10), (11) and

(12), respectively. Additionally, we also produced images

Fig. 3. Diagram showing the spectral regions for computing the three

indices used in this study, namely, Normalized Difference Vegetation Index

(NDVI), Photochemical Reflectance Index (PRI) and Water Band Index

(WBI).
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Fig. 4. Low-altitude AVIRIS Indices scene (400� 250 pixels, or 1.6� 1.0 km), dated 5 October 1998 from the Rancho Sierra Vista site in the Santa Monica

Mountains, CA (34j8V32WN, 118j57V19WW). Note the similar landscape patterns for NDVI (A) and WBI (C), suggesting that most of the water detectable in

this image was present in green leaves. PRI (B) had different spatial patterns than both NDVI and WBI, indicating that it senses different aspects of green

vegetation than NDVI and WBI. Also indicated in (A) are the chaparral and grassland areas (50� 50 pixels) used for the average local variance estimates in this

study. In this low-altitude image (pixel size approximately 4� 4 m), bright spots indicate individual canopies or small patches of relatively uniform shrub or

tree cover, generally not resolvable in high-altitude scenes.
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of these indices from the 1998 AVIRIS image (Fig. 4).

AVIRIS band #30 was used for red reflectance and band

#47 was used for NIR reflectance. PRI was calculated

using bands #17 and #21 for 531 and 570 nm wave-

lengths, respectively. For calculating WBI, bands #57 and

#65 were used to provide wavelengths at 900 and 970 nm,

respectively.

Experimental semivariograms were calculated using

these vegetation index data from all the ground-based

transects. When constructing the semivariograms, we had

to choose a maximum number of lags to include in the

model fitting. Since the length of lags determines the

number of those lags in a given transect, the longer the

lag, the fewer is their number. As a result, the confidence

that can be ascribed to a semivariance C(h) decreases with
increasing lag distance h (Curran, 1988). It is inadvisable to

interpret lags longer than a fifth to a third of the transect

length because of insufficient sample size (Webster, 1985).

In this study, we used lags up to a fifth of the transect length,

i.e., 20 m, for all subsequent analyses.

Since our goal was to find an optimal pixel size for the

large, heterogeneous areas of the Santa Monica Mountains

region rather than for each individual transect, we resorted

to an averaging procedure for the semivariance data. This

was done by the use of a pooled point-support variogram

across all transects. The effect is similar to that of aggrega-

tion, and it reduces the overall high frequency variations in

the variance (Woodcock, Strahler, & Jupp, 1988).

For chaparral, we first calculated the semivariance of

each transect for lags up to 20 m. Then, for each lag hi (i = 1,

2,. . .20), we averaged the semivariance for that lag from all

transects for one season. These average semivariances were

then considered as representative values for all of the

chaparral transects, and hence, for the chaparral vegetation

of the study region for that season. Similarly, we produced

point-support semivariance values for grassland. This aver-

aging scheme is expressed mathematically as follows:

CðhiÞ ¼
1

k

Xk
j¼1

CðhiÞj ð13Þ

where i= 1, 2,. . .20, k = 10 for chaparral and 3 for grassland

in both 1999 and 2000. Since the1998 chaparral and grass-

land data were from only one transect each, no averaging

was done for those data sets. All of these semivariance data

sets were then used for spherical semivariogram model

fitting by utilizing the linear programming methods

described in Eqs. (6)–(9).

As a further means of examining the optimal pixel size,

we used the Average Local Variance (ALV) procedure with

the 1998 AVIRIS image. ALV is defined as the average

value of the variance within a 3� 3 moving window passing

through any selected part of an image (Woodcock &

Strahler, 1987). For example, if the selected part of the

image has L rows by M columns and a pixel size v, then the

ALV of that image subset can be estimated by (Curran &

Atkinson, 1999):

r2
v ¼

1

L�M

XL
l¼1

XM
m¼1

1

9

Xþ1

j¼�1

Xþ1

k¼�1

� ½zvðl þ j;mþ kÞ � zvðl þ j;mþ kÞ�2 ð14Þ

where rv
2 is the ALV, zv is the average of the moving 3� 3

window surrounding a center pixel zv, and j and k are two

counters for that window.

ALV is calculated for a range of integer multiples of the

original pixel size v and expressed as a function of pixel

size. The spatial resolution at which the peak occurs may

help to identify the optimal pixel size for studying surface

processes. The rationale behind this technique is that, at a

Fig. 5. An example of the integer multiple of original 4-m pixels that were

used for the average local variance (ALV) estimation. Here, a subregion of

the chaparral NDVI image is shown at 4-, 8-, 12-, 16- and 20-m pixel

resolutions. The original 4-m pixels were degraded to the larger pixels and

then the ALV was calculated from each of these images using a 3� 3

moving window.
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high spatial resolution where the pixel sizes are smaller than

the surface structures, the neighboring pixels would be

highly correlated and hence a low variance would exist

among them. With increasing pixel size, this similarity

decreases and variance increases. However, as the pixel size

increases beyond the scale of spatial variation, more dis-

similar surfaces would be contained in one pixel and the

local variance would start decreasing. Therefore, the pixel

size at which the peak ALV occurs would identify the

predominant spatial variation in the image. The ALV thus

obtained should be similar to the point-support variogram of

the region (Vargas-Guzmán, Myers, & Warrick, 2000).

We used a 50� 50-pixel subset from each of the grass-

land and chaparral areas of the 1998 AVIRIS image to

examine the ALV, and hence the optimum pixel sizes, for

NDVI, PRI and WBI of those two areas (Fig. 4A). This

subset size was chosen in order to fit a square image

window with a continuous coverage of one type of vegeta-

tion (grassland or chaparral). Also, our grassland and

chaparral transects in that site fell inside these image

subsets. Since the original image had a 4-m pixel size, we

used 8-, 12-, 16- and 20-m pixel sizes as the integer

multiples of the original pixels (Fig. 5). To produce larger

pixels, we reduced the resolution of the original 4-m image

by integer factors 2, 3, 4 and 5 in the X and Y directions and

averaged all of the original ‘‘small’’ pixels to make up the

new ‘‘big’’ pixels. Then, we used Eq. (14) with a 3� 3

running window to calculate the ALV for each of these

resampled images.

4. Results

4.1. Semivariogram

Semivariogram model fits using the NDVI, PRI and WBI

data sets for all three seasons indicate that there was always

some nugget variance present (Figs. 6–8). During the

reflectance measurement of vegetated surfaces, there is

always a possibility of slightly varying FOV, sun angle,

sky conditions, temporally changing surface characteristic,

or other sources of variability, and hence a nonzero nugget

in the semivariogram. In contrast to many artificial surfaces,

biological materials that can change their structure and

Fig. 6. Semivariograms for chaparral and grassland in the Fall of 1998, with data points shown as hollow dots and model fit as solid lines. The arrows show the

ranges at which sills were attained. As mentioned in the text, only the spherical semivariogram model was fitted using the data sets. WBI semivariance (F) did

not attain a sill within the 20-m lag.
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physiology over short time intervals (e.g. seconds to

minutes) may be particularly prone to these sources of error.

It can also be seen in Figs. 6–8 that the variances in

chaparral transects were always higher than those in grass.

However, since the reason for using the semivariogram was

to determine the optimum pixel size, the characteristic of the

‘range’ was our main concern.

In the Fall of 1998, the range of NDVI from the chaparral

transect was14 m, and those of PRI and WBI were 13 m,

even though the experimental data showed a somewhat

cyclic characteristic at a lag of approximately 12 m (Fig.

6A, B and C). The model fits are shown as solid lines, along

with the experimental semivariance data shown as hollow

dots. Grass semivariance for 1998 attained sills at ranges 16

and 12 m, respectively, for NDVI and PRI, but the model

did not attain a sill for WBI data (Fig. 6F). In the latter case

(grass WBI), the semivariance data showed rather a linearly

increasing trend up to 18 m lag and then seem to attain a sill

beyond 20 m.

In the Fall of 1999, semivariance model outputs of

NDVI, PRI and WBI from chaparral transects attained sill

at ranges of 15, 16 and 14 m, respectively (Fig. 7A, B

and C). On the other hand, semivariance model outputs of

NDVI and PRI from grassland transects failed to attain

sills within the 20-m lag (Fig. 7D and E). The semi-

variance of WBI from grassland transects attained a sill at

a 15-m range (Fig. 7F). In these figures, the error bars

with crosses at the end show the upper and lower limits of

semivariance in the experimental data from different

transects, and the solid lines show the model fits using

the regularized semivariances from those experimental

data. The scatters in the semivariance of experimental

data were lower for chaparral NDVI and PRI (Fig. 7A

and B) than those in the other four diagrams (Fig. 7C–F).

However, it is noticeable that the scatter generally fol-

lowed the trend of the model fit in case of attaining a

range. For grassland NDVI and PRI in 1999 (Fig. 7D and

E), where the model could not attain a range within 20 m,

Fig. 7. Similar to Fig. 6, but with data from the Fall of 1999. The error shows the upper and lower limits of semivariance in the experimental data from different

transects, and the solid lines show the model fits using the regularized variances from those experimental data. Range values are shown with arrows. Grassland

NDVI (D) and PRI (E) did not attain a sill within the 20-m lag used for this study.
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the semivariance of field data also showed a linearly

increasing tendency, rather than attaining a sill. Since

the point-support semivariances were used to fit the

semivariogram model, this agreement between data and

model output was expected.

The chaparral transects in the Spring of 2000 had similar

range values as those in the Fall of 1999: 14 m for NDVI, 15

m for PRI and 13 m for WBI (Fig. 8A, B and C). The

scatters in the experimental variances were higher in cha-

parral NDVI and PRI than those in 1999, but the scatter in

WBI experimental semivariances was lower. The Spring

grassland transects had higher range values, similar to those

in Fall of previous years. The range for grassland NDVI was

19 m, and for PRI, it was 15 m (Fig. 8D and E). Once again,

the WBI could not attain a sill within the 20-m lag, hence,

the range was greater than 20 m (Fig. 8F). A summary of all

range values is given in Table 3. For all three indices

discussed in this paper for the three seasons, chaparral

ranges varied from 13 to 16 m, and grassland ranges varied

from 12 to 19 m, exceeding 20 m in a few cases, and not

fitting a semivariogram model in one case. It is noticeable

that all chaparral indices always had a range within the 20-m

lag, whereas the grassland indices were the ones with ranges

outside 20 m.

Fig. 8. Semivariograms for chaparral and grassland data collected in the spring of 2000. Here again, grass WBI did not attain a sill within the 20-m lag. Error

bars, solid lines and arrows represent information similar to that in Fig. 7.

Table 3

Semivariogram ranges calculated from the transects of hyperspectral indices

of chaparral and grass in all three seasons

Season Index NDVI PRI WBI

Fall 1998 chaparral 14 13 13

grassland 16 12 >20

Fall 1999 chaparral 15 16 14

grassland >20 >20 15

Spring 2000 chaparral 14 15 13

grassland 19 15 >20

The unit is meters (m). The range is expressed as >20 when a sill was not

attained within the 20-m lag.
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4.2. Local variance

The ALV method was tested using the AVIRIS image

data from the Fall of 1998. All indices showed a marked

increase in ALVas the pixel size increased from 4 to 8 to 12

m, and attaining peaks at 16 m, except for chaparral PRI,

which peaked at 12 m (Fig. 9A, B and C). Beyond the peak,

the ALV again decreased. These results indicated that the

local variance for both grassland and chaparral sharply

decreased when the aggregation of pixels exceeded 16 m

(12 m for chaparral PRI).

Similar to the semivariogram analysis, the values of

chaparral variances at each pixel size for all three indices

were always higher than those for grassland. A visual obser-

vation of the ALV graphs (Fig. 9) shows that except for

chaparral PRI, the rate of decrease of all other ALV values

from the peak to the 20-m pixel size was steeper than their rate

of rise from 4 m to the peak, indicating a rapid decrease in

spatial variance as the pixel size increases to 20 m.

5. Discussion

The semivariograms from all transects using all three

hyperspectral indices (NDVI, PRI, WBI) showed that for

the chaparral and grasslands, 12 m was the lowest range

(Table 3). Since we are concerned about the limit at which

spatial variance may begin to decrease due to aggregation,

we chose the lowest limit among the ranges. Following the

sampling theorem (McGrew & Monroe, 2000), this indi-

cates that a pixel size larger than 6 m may lose spatial

information due to averaging. On the other hand, a much

smaller pixel size than this 6-m range would mean an

unnecessarily large volume of data. Hence, a balance is

needed in the choice of an optimum pixel size.

The ALV results of Rancho Sierra Vista chaparral and

grass images closely matched the results obtained from the

semivariogram analysis. Local variances peaked at pixel

size of 16 m, with the exception of chaparral PRI, which

attained peak at 12 m. These results indicate that 6 m (half

of the lowest among the ALVs) would be the optimum pixel

size for studying these hyperspectral indices, which is very

similar to the results obtained from the semivariance studies.

Since the ALV were calculated using only one site of

chaparral and grassland at Rancho Sierra Vista, these results

by themselves may not have been as widely applicable as

the semivariogram analysis that was done using data from a

wide range of sites. However, the similarity of ALV results

with the semivariogram analysis provide confidence that 6

m may be safely considered a suitable pixel size for

ecosystem studies in the Santa Monica Mountains using

hyperspectral remote sensing.

Chaparral vegetation of Santa Monica Mountains region

has a readily visible structural pattern, with clumps of

shrubs and occasional open patches, which in turn may be

partially covered by grasses or forbs. For chaparral, the

range of approximately 12 m appears to correspond roughly

with the scale of these visible patterns. Grassland, on the

other hand, generally appears more homogenous, even

though at fine scales ( < 1 m) multiple patches and species

may be present. For grassland, the lack of a clear range

between 1 and 20 m fits the lack of clearly visible patterns at

the 1–20-m scale. These contrasting structures of these two

vegetation types can be easily recognized from photographs

of these areas (Fig. 10).

A visual analysis in the field suggested that the sampling

distance of 6 m obtained from this study corresponded

roughly with the half of the size of patches of functionally

similar vegetation (e.g. patches dominated by a single group

of species or functional type such as evergreen or drought-

deciduous vegetation). Given that the analyses were based

on indices with well-understood structural and physiological

relevance (i.e., green leaf area index, photosynthetic activity

and water content), it is reasonable to conclude that the 6-m

sampling distance emerging from these analyses represents

a fundamental scale for analyzing certain key ecosystem

processes at local and regional scales. For example, land-

Fig. 9. Average local variance of the 50� 50-pixel subset of chaparral and

grass indices, calculated from the 1998 AVIRIS image. Except for the

chaparral PRI, all other ALVs peaked at 16 m and then decreased. The

chaparral ALV peaked at 12 m.
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scape patterns of leaf area index (LAI), biomass, photo-

synthetic flux and evapotranspiration of vegetation in the

study region can probably be well described using this

fundamental pixel size.

This 6-m fundamental scale emerging from this study is

slightly smaller than that emerging from a previous analysis

of one northern California grassland using AVIRIS high-

altitude imagery (Gamon, Field, Roberts, Ustin, & Valentini,

1993). That study concluded that a pixel size of roughly18–

20 m (equivalent to high-altitude AVIRIS pixel size)

adequately captured variations in grassland greenness and

photosynthetic activity associated with larger patterns of

slope, aspect and soil type, but missed finer scale variability

associated with individual plants. Unlike our study, that

previous study did not conduct independent field sampling

at the sub-18-m scale and lacked the low-altitude AVIRIS

imagery that has only recently become available on a

limited basis. Also, the results of our analyses showed that

Fig. 10. Photograph of a representative chaparral site (A) and a grassland site (B). The chaparral site has a recently burned region visible in the middle, with 3-

year-old stands in the unburned areas. The patchiness of the landscape (associated with shrub clusters and bare regions) is clearly visible from this picture.

Grassland typically appears more uniform, with some visible variation due to gradients in productivity (e.g. associated with terrain and varying soil moisture).

Note that very fine scale ( < 1 m) patterns are present, but not resolvable with the methods used here.
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in several cases, a 20-m pixel size could have been suitable

for studying the more visibly homogenous grassland but not

suitable for the chaparral areas.

Thus, one conclusion from this analysis is that the

selection of the ‘‘ecologically fundamental scale’’ is, to

some extent, determined by the range of pixel sizes used

in the analysis. Many current satellite and aircraft sensors

(e.g. TM with its 30-m pixel size, or AVHRR with its 1.1-

km pixel size) simply cannot resolve finer scales, and thus

would not be able to detect potentially important patterns

below these scales. Similarly, because 1 m was the funda-

mental inter-sample distance (i.e., lag) used in our study, we

necessarily ignored potentially important spatial patterns at

much finer scales. For example, sub-meter patterns of seed

germination and subsequent seedling survival commonly

studied in ecological plot studies are undoubtedly relevant

to larger ecosystem processes, particularly in the early

regeneration stages after a fire. However, the 1-m scale

was more than adequate to capture larger scale patterns

associated with assemblages of similar vegetation type.

Researchers have previously shown that the canopy

physiological processes (such as CO2 and water fluxes)

and structural characteristics (such as biomass and leaf area

index) can be studied using remote sensing. Recent advan-

ces in hyperspectral remote sensing indicate that the narrow

band indices can track specific physiological signals (such

as photosynthetic pigments) more efficiently than the broad-

band indices. Based on these promising results, NASA is

planning to launch hyperspectral imager satellites in the near

future (for details see http://nmp.jpl.nasa.gov). For efficient

use of these hyperspectral images, ecosystem scientists need

to specify the suitable spatial scales for data collection. Our

study is a step forward toward that direction, showing the

optimal spatial scale for mapping biomass, photosynthetic

flux and water content of a semiarid biome in southern

California.

6. Error statements and future directions

The results obtained in this study are based on sound

geospatial techniques, but these were not exhaustive.

Rather, these results have answered some questions and

raised some new concerns, which are discussed next. Both

the semivariogram and ALV approaches have some associ-

ated errors that should not be overlooked in interpreting the

results obtained in this study. For semivariogram analysis,

theoretical model fitting using experimental data may intro-

duce error (Oliver, 1996). Also, the calculation of point-

support semivariance (Eq. (13)) might have compromised

some of the variances and hence the outcome of the range

values, even though this scheme helped in avoiding the

transect-specific semivariograms and provided regional gen-

erality to the results.

Another issue not addressed in this study is the inclusion

of terrain and substrate, and their potential influence on the

hyperspectral signatures and ultimately on the spatial char-

acteristics of vegetation function. However, the relatively

level terrain minimized these concerns at our sites, but may

be more important at other locations. These issues are the

subjects of our continuing research.

7. Conclusions

The main purpose of the analyses presented in this paper

was to investigate the effects of spatial scale on hyper-

spectral studies of southern California ecosystem function

(namely, biomass, photosynthesis and water content), and to

recommend suitable pixel sizes for that purpose. Geostat-

istical methods of semivariogram analysis and local var-

iance estimation were used with ground-based transect data

and airborne image data, respectively. Our ground-based

transects were distributed across a wide area and included

chaparral vegetation of different age groups and annual

grassland, representative of a large portion of the Santa

Monica Mountains region and southern California vegeta-

tion in general.

Semivariogram analysis of three indices determined from

the ground transects revealed that 6 m would be a pixel size

that would retain most of the characteristic spatial variation

of chaparral and grassland ecosystem function, which can be

sensed with hyperspectral sampling. Local variance esti-

mates using the low-flying AVIRIS image also indicated

that 6 m would comprise an optimum pixel size. Because

the ground-based hyperspectral signatures and the AVIRIS

image were independently collected and consisted of data

sets from a wide range of natural areas from three seasons of

3 separate years, this good match provided confidence in the

results presented in this study.

One of the implications of these findings for the existing

hyperspectral sensors such as AVIRIS is that, for ecosystem

function studies of southern California vegetation, the

higher resolution images acquired with low-altitude aircraft

would be a better choice than the 20-m pixels acquired with

high-altitude flights. For designing future airborne and

satellite-based hyperspectral sensors, these results may pro-

vide a guideline for selecting their spatial resolutions.
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Méthy, M. (2000). Analysis of photosynthetic activity at the leaf and can-

opy levels from reflectance measurements: a case study. Photosynthe-

tica, 38(4), 505–512.

Myneni, R. B., Los, S. O., & Asrar, G. (1995). Potential gross primary

productivity of terrestrial vegetation from 1982–1990. Geophysical

Research Letters, 22(19), 2617–2620.

Oliver, M. A. (1996). Geostatistics, rare disease and the environment. In

M. Fisher, H. Schollen, & D. Unwin (Eds.), Spatial Analytical Per-

spectives on GIS (GIS Data 4) ( pp. 67–85). Bristol, PA: Taylor and

Francis.
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