Spexan Sample Data and Sample Runs

Introduction

The aim of this document is to describe the sample data set which is distributed with spexan and give a series of example applications to allow a user to see how the program should run and how the data files should look.

It is possible to use spexan without reading this document, the Spexan Manual describes in some detail both how the program works as well as the details of how the data files should be set up. The Inedit Manual also contains some useful information, primarily on setting the control parameters to get spexan to do different things.

Using this document

This document consists of
three
 main sections. The first describes the files that are inc
luded in this package,
 the
next
 is a description of the data set accompanying this file. It describes the data set and how all of the individual spexan files were generated from the main table. The second section describes some elements of controlling spexan and gives a number of examples. This section is useful for seeing what spexan does and whether it is doing what the user expects of it.

A new user would probably find it useful to approach these two sections in reverse order with the manual at hand and looking at a copy of the data set in the Excel file. The user could then try some of the settings and see what they return and if they return what is expected to get a feeling for how to run spexan. Coming to the first section they can see an example of setting up a problem from a data set to help in trying to fit new data and a new problem to spexan.

This document is in a rough draft stage and although the data contained in it is accurate the writing is bound to be inelegant, so consider this an apology in advance.

Installing Spexan and the Example files

There are four documents that should be transported with spexan. Obviously they can be unzipped to any location and do not need to be in the same folder as spexan or whatever. They are:

README.TXT	This is the standard readme file which lists what components should be in the zip file.

Spexample.doc	This is this file.

Spexan Manual.doc	The spexan manual and the main source of information on spexan.

Inedit Manual.doc	This describes in detail the use of the input file editing package. You can edit the input file using any text editor and do not need to use inedit. The main value of the Inedit Manual document is the more detailed description of the different options available to the user.

The files which are necessary in order to run spexan follow. These do not include the samp
le data files:

Spex.exe	This is the spexan execu
table. It should be pu
t in the same folder (or directory) as input.dat, although
 it can be run with the two in separate folders.

input.dat	This holds all of the input options for spexan including the folder name of all
the other data files. Input.dat should be in t
he same folder as Spex.exe.

InEdit.exe	The input.dat file editor. It should be in the same folder as input.dat.

The following files form the spexan example documents
, they should all be in the same folder (or directory) which may be the same
folder as the spex.exe program but need not be. If these documents are put in a different
folder then input.dat will need to be
 updated to point to this folder
.
 They are described in detail in the next section. They include:

spexex2.xls	An Excel file which holds the sample data in the form of a matrix. All of the
other data files are also in this file in separate worksheets.

name.dat

cost.dat

species.dat

PUvSPr.dat

The Data Set

The data set appears in an accompanying Excel file (spexex2.xls). The data set is completely random
and was
generated by Drew Tyre so that the distribution of species frequencies and site richness both follow a log normal distribution. There are 99 planning units and 24 species (called simply A, …, X).

Creating data files from the data set

There are a number of files which accompany this data set. These include:

name.dat

species.dat

cost.dat

puvspr.dat

input.dat

These are a subset of the possible files which could be used with spexan. The Spexan Manual describes in detail the requirements of these and other files and is the best first reference for file construction.

Name.dat contains an identification number for each planning unit. The number needs to be an integer with about 6 or fewer digits. It doesn’t matter what these numbers are or what order they appear in this file as long as they are all unique and they each appear exactly once in the file. Spexan will count up the numbers in this file to know how many planning units there are and store them so that it can translate other instances of these identifiers into its own internal id numbers.

In this case generating the Name.dat file was simplicity. The row with the planning unit numbers was copied and then pasted into a new file (transposing the numbers so that they appear in a column). The resulting file appears in the same Excel file in the worksheet titled name.dat.

Cost.dat

If the different planning units have different costs (or perhaps different areas), then there needs to be a cost.dat file. If one does not exist then it is assumed that all planning units are equi-costs and that you are interested in the number of planning units in the system rather than total area or total cost.

In this example the costs are artificial and were generated randomly. They appear both in the cost.dat file as well as the cost.dat worksheet in the Excel file.

PUvSPr.dat

This is the planning unit versus conservation value file. Spexan can take something like the an ordered matrix for this file, but usually it is easier to have a file
with
 each record on an individual line. This is the PUvSPr.dat file and it looks like:

PU ID 	Conservation Value ID	Amount.

On each line we have one planning unit id, one of the conservation values which occurs on that planning unit and the amount of the conservation value which appears. This is often a more convenient way to store this data and leads to a smaller value when the data matrix is sparse.

It appears on the Excel spreadsheet in the PUvSPr.dat worksheet. Extracting this list information from a table is slow in Excel. If the information is already in such a table and there are a great number of records it would make more sense using the PUvSP.dat format over the PUvSPr.dat format, as described in the Spexan Manual.

Species.dat

This file is essential and contains a lot of problem definition information. Each line of the file contains the following pieces of information.

Conservation Value ID	Category	Target CVPF Target2 Sep. Distance	Name

The values in italics (Category, Target2 and Separation Distance) are not necessary for this example and should be set to 0
 for each species
. The conservation value ID is a numeric identifier for the conservation value. It should be the same as the conservation value ID used in the PUvSPr.dat file.

The Target is the amount of this species which is required to be reserved in the reserve system. They have been preset in the accompanying Species.dat file. Setting the targets for each conservation value is one of the most important parts of defining the problem. The targets have been arbitrarily set here. For at least one species the target is greater than it’s total abundance.

CVPF is short for conservation value penalty factor. This value can be varied to make sure that the targets are all met, and can also be varied to reflect the relative importance of meeting the targets for each conservation value.

The Name is the name of the species, it cannot contain spaces and the trick here is to take the species name and do a find/replace on them, replacing spaces with the underscore character. This is not an issue in this case because the names of the species are just A, B, C, et cetera.

Input.dat

This is the file which contains all of the control parameters for fine tuning how the program runs. The file can be edited by hand but it is more easily edited using the InEdit program. It is assumed that this program is used and we shall see by a series of examples the results which are obtained for different settings.

Testing Spexan on the Sample Data

Running a Greedy Heuristic

Start running InEdit.exe. This program consists of a number of pages of instructions in a tabbed notebook. We’ll start by running a simple greedy heuristic with no frills. Starting from the first tab in the notebook labelled “Problem” set the number of repeat runs to 10 and the boundary modifier to 0. The boundary modifier is only used when there is spatial data.

Under run options select “Heuristic Alone” in the top box and “Greedy” for the heuristic type.

The Annealing options are irrelevant because we are running a heuristic rather than simulated annealing, so we can ignore them completely.

The Output options are important and they are frequently changed. The Screen Output option should be set to “results only”. This option controls what information is displayed when the program is run. The “results only” is the most useful summary option. The “general progress” option is good when there is difficulty in spexan reading the input files, or it gives odd results. “Detailed Progress” is primarily used to track the progress of the algorithms in detail.

Below this drop-down box are a number of check boxes which control which output files are generated. At the moment these should all be turned off and the Save File Name is then irrelevant, as there are no saved files. Species missing should be set to 1, this means that any species which is below it’s target is counted as a missing species in the final summary. It could be considered the tolerance of the target, possibly the user would consider a conservation value as meeting its target (near enough) if it is within, say, 1% of the target. In this case this value would be set to 0.99 rather than 1.

The input and output directories are rather important. Hopefully everything is set up so that they already point in the correct direction. Because we haven’t selected any types of file for saving the output directory is not important. Both of these directories can be set using the browse button or by entering in their path into the appropriate box. If the input directory is incorrect then the program will terminate shortly after it starts to run, with a more verbose screen output selected it would complain that the “name.dat” file could not be found.

Cost threshold should not be enabled and the threshold should be set to zero to make sure that this option is turned off. In the miscellaneous page the starting prop and best scoring speed up should be set to zero.

Repeating the above information. The following options should be set:

Repeat runs in
the Problem tab should be set to 1

Boundary length modifier set to 0

Under run options set run type to
“
heuristic only
”

Set heuristic type to
“
greedy
”

Ignore all the options in the Annealing tab because spexan will.

Set screen output to
“
Results only
”

Turn off all save files. Save name is now irrelevant

Make sure that the input directory points to where the example files are

the output directory is irrelevant because their is only screen output being generated

Under the cost threshold tab make sure that cost threshold is not enabled.

Under the miscellaneous tab
set the starting prop to 0.

do not specify random seed

set Best score speedup to 0.

Running the program now should give the following output:

Spatially Explicit Annealing v3.2

 by Ian Ball 1999

iball@maths.adelaide.edu.au

Run 1 Value 345.2 Cost 205.8 PUs 12 Boundary 0.0 Missing 1 Shortfall 10.00 Penalty 139.3

Time passed so far is 0 secs

 The End

Press return to continue.

Figure 1. Spexan generated output.

It is possible that the “Time passed so far” will be different from 0 secs. After the standard header information the information for each run is displayed, in this case there is only one run.

The information for each run appears as a value next to a description of the purpose of that value. For a long number of runs it is often more suitable to save this information to a file which can be done using by choosing the save ‘summary’ option as described in the manual.

The value on this line is the objective function value. Cost is the cost of the planning units which make up the system, there are 12 planning units in the solution system. 1 conservation value is missing (we set the target for a greater abundance than occurs for species A). The shortfall is the amount that is missing and the penalty is the penalty for not meeting the requirements for that species.

Adaptive Annealing

The second test is to test out the adaptive annealing algorithm, which is a very useful one to use. For this one make the following changes:

Change the number of repetitions to 10.

Under Run options change the top drop down box to read “Annealing with Iterative Improvement”

Under the annealing tab set the number of iterations to 100,000 and the number of decreases to 10,000

Check the adaptive annealing box to select that option.

Everything else should remain the same.

The output for this set of runs should look something like:

Spatially Explicit Annealing v3.2

by Ian Ball 1999

iball@maths.adelaide.edu.au

1 species cannot meet target .

Run 1 Value 308.8 Cost 225.2 PUs 14 Boundary 0.0 Missing 1 Shortfall 6.00 Penalty 83.6

Run 2 Value 313.4 Cost 229.8 PUs 14 Boundary 0.0 Missing 1 Shortfall 6.00 Penalty 83.6

Run 3 Value 307.7 Cost 210.1 PUs 13 Boundary 0.0 Missing 1 Shortfall 7.00 Penalty 97.5

Run 4 Value 312.4 Cost 228.8 PUs 14 Boundary 0.0 Missing 1 Shortfall 6.00 Penalty 83.6

Run 5 Value 306.8 Cost 237.1 PUs 14 Boundary 0.0 Missing 1 Shortfall 5.00 Penalty 69.7

Run 6 Value 319.6 Cost 234.1 PUs 14 Boundary 0.0 Missing 2 Shortfall 8.00 Penalty 85.5

Run 7 Value 310.6 Cost 226.9 PUs 14 Boundary 0.0 Missing 1 Shortfall 6.00 Penalty 83.6

Run 8 Value 324.7 Cost 247.9 PUs 15 Boundary 0.0 Missing 4 Shortfall 8.00 Penalty 76.8

Run 9 Value 307.4 Cost 221.4 PUs 13 Boundary 0.0 Missing 2 Shortfall 7.00 Penalty 86.0

Run 10 Value 307.2 Cost 237.5 PUs 14 Boundary 0.0 Missing 1 Shortfall 5.00 Penalty 69.7

Time passed so far is 1 min and 0 secs

 The End

Press return to continue.

The time passed could
be different (particularly if you are running this on something faster than a lap-top
)
.

Every run will be different but with the same range of results as we see here.

Incidentally when we compare these solutions with the last we see that the costs are all higher and sometimes the number of missing species is greater than one but the amount of the shortfall tends to be lower. Which method produces the better solution? With a longer annealing time better answers will probably fall out in this example.

Cost Threshold and Adaptive Annealing.

In this last test case we will test the cost threshold function. Here the total cost of the reserve will be constrained to 180 units. Actually, this is not a constraint but penalties are applied when the reserve system gets larger than this and with appropriate penalties we can get the cost down to the level desired.

Use the same set up as in the previous case but with the following changes all in the “Cost Threshold” tab.

Click on Cost Threshold enabled to allow the other fields to be edited.

Set the Threshold to 180.

Set Penalty factor A to 1.

Set Penalty factor B to 1000.

The output from this method is:

Spatially Explicit Annealing v3.2

by Ian Ball 1999

iball@maths.adelaide.edu.au

1 species cannot meet target .

Run 1 Value 605.2 Cost 181.7 PUs 14 Boundary 0.0 Missing 11 Shortfall 117.00 Penalty 423.5

Run 2 Value 763.3 Cost 184.7 PUs 13 Boundary 0.0 Missing 12 Shortfall 233.00 Penalty 578.6

Run 3 Value 768.3 Cost 182.5 PUs 14 Boundary 0.0 Missing 13 Shortfall 225.00 Penalty 585.8

Run 4 Value 626.7 Cost 186.7 PUs 13 Boundary 0.0 Missing 14 Shortfall 134.00 Penalty 440.0

Run 5 Value 561.9 Cost 184.2 PUs 13 Boundary 0.0 Missing 10 Shortfall 103.00 Penalty 377.6

Run 6 Value 599.0 Cost 186.8 PUs 13 Boundary 0.0 Missing 10 Shortfall 118.00 Penalty 412.2

Run 7 Value 552.8 Cost 185.4 PUs 14 Boundary 0.0 Missing 8 Shortfall 78.00 Penalty 367.3

Run 8 Value 645.0 Cost 185.9 PUs 13 Boundary 0.0 Missing 9 Shortfall 139.00 Penalty 459.0

Run 9 Value 566.1 Cost 180.9 PUs 13 Boundary 0.0 Missing 9 Shortfall 113.00 Penalty 385.2

Run 10 Value 638.3 Cost 187.0 PUs 12 Boundary 0.0 Missing 10 Shortfall 180.00 Penalty 451.3

Time passed so far is 1 min and 6 secs

 The End

Press return to continue.

Note that under the cost threshold settings the cost always ends up slightly higher than our threshold, it is a ‘fuzzy threshold’. Also with a cost so much lower than the one which we found was required in the previous tests it should not be surprising that the number of conservation values which do no
t meet their targets it higher. With different penalty factors the constraint to this thre
shold can be stronger.

Ian Ball (iball@maths.adelaide.edu.au)		� DATE �15/10/99�

Spexan Sample Data	� PAGE �
8
�

